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PREFACE

This report documents the findings and recommendations

of a Rand Corporation study on the health effects of air

pollution. The study was funded by the U.S. Environmental Protection

Agency under Cooperative Agreement No. CR811040-01-0. It represents the

first phase of a three-phase project evaluating the relative abilities

of several analytical approaches to measure pollution effects. The data

analyzed were collected in Seattle and Dayton during the Health

Insurance Experiment (HIE) that Rand conducted for the Department of

Health and Human Services. The second phase will extend the analysis to

HIE data from other cities and to other data sets. These results will

then be used in the third phase to measure the health effects of air

pollution.

Those effects are important for formulating federal programs for

pollution control. Comparing the benefits with the costs of control

will enable federal lawmakers and regulators to decide on a cost-

effective level of control. Since the study considers several

pollutants, Phase II output may be helpful to regulators who must decide

where to concentrate scarce pollution control resources. Our

methodology and findings should also be of interest to several other

groups:

All parties interested in air quality, especially in decisions

regarding the Clean Air Act and regulations issued under its

authority.

Epidemiologists interested in the health effects of ozone and

other pollutants.

Statisticians and social scientists interested in the

application of statistical procedures to panel data, especially

procedures designed to draw precise inferences from limited

data.
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SUMMARY

BACKGROUND

It is widely known that air pollution adversely affects health.

The "killer fogs" of London amply demonstrated that very high

concentrations of air pollutants can kill people. Controlled laboratory

studies have also identified adverse short-term effects of high levels

of pollutants on lung function and other physiological indicators. An

analysis done in Southern California found that people living in a

highly polluted area had poorer health than those in a cleaner location.

however, studies of pollution at the more moderate levels encountered by

almost all Americans have been much less conclusive. Some have not been

able to detect significant health effects; others have yielded mixed

results-- relationships in the expected direction in some cases,

associations between increasing pollution and improving health in

others.

The question, then, is why research into air pollution has not been

more successful at measuring health effects. One possible reason is

that many of the studies done to date have had one or more

methodological shortcomings. Some. for instance, have confounded the

effects of air pollution with those of risk factors such as smoking.

Others have not accounted for the possibility that people with

respiratory problems might move to places with cleaner air, leaving a

healthier population behind in the polluted area.  Generally, data have

not been available for analyzing day-to-day health responses of general

populations to pollution episodes. Finally, there has been some

difficulty in deciding what diseases to look for as evidence of health

effects.

Whatever its cause, the lack of reliable assessments of the health

effects of air pollution has hampered regulatory agencies interested in

comparing the value of health improvements obtained through good air

quality with the costs of controlling pollution.
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OBJECTIVES AND APPROACH

This study has two objectives: to examine the health effects of

air pollution on a general population in moderately polluted cities and

to apply a battery of disparate analytical approaches to an especially

attractive set of data collected with the same data methods in two

widely separated cities, Seattle and Dayton.

The data we analyzed were collected during The Rand Corporation's

Health Insurance Experiment (HIE). This data set is attractive for our

present purpose for several reasons:

It is a sample of the general population, not of some group

selected for a particular characteristic, e.g., susceptibility

to air pollution.

Data were collected in cities with pollution levels typical of

U.S. cities in general.

Several general health measures, such as use of medical

services and time lost to illness, were recorded daily for

several thousand people over three to five years.

These were supplemented by other general measures, such as

overall health status and lung function, in addition to data on

specific diseases and chronic health problems.

The data included information on smoking and other risk

factors, and other potential confounding variables and risk

factors.

We employed a simple cross-sectional analysis and three panel

analyses. The cross-sectional analysis estimated pollution effects by

pairing all individual yearly responses (e.g., time lost to illness over

the course of a year) with the corresponding individual yearly pollution

exposures. This analysis treated all responses the same; yearly

responses from the same person and from different people were all

regressed together. The panel analyses, on the other hand, tracked

responses from the same individual or population over time. These

analyses were as follows:
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An analysis that used the aggregated exposure and response of

the whole population on a daily basis. Comparing the whole

fixed population with itself from one day to the next

eliminated any bias resulting from geographical sorting on the

part of sickly people.

An analysis that took advantage of within-city data on

variations in pollution by using the day-to-day health

responses of individuals. This approach employed recently

developed statistical methods designed to draw more precise and

consistent estimates. It eliminated geographical sorting bias

by estimating responses for each person separately; thus, each

person acted as his own control. The individual responses were

then analyzed together.

An analysis that estimated the change in individuals' health

over the entire course of the HIE as a function of their

cumulative exposure to pollution over that period. Using

change in individual health status as the dependent variable

should reduce the sorting bias.

RESULTS

We found the individual day-to-day approach to be the most

promising. It yielded negative associations of air pollution with 

health for all pollutants examined except for ozone. Half of those

associations were significant at the 1 percent level. Because this

approach, unlike the others, was applied only in Seattle and because it

is quite expensive, we recommend that it be tested further.

The aggregated day-to-day method yielded a number of

counterintuitive results. We do not have a good explanation for the

"misbehavior" of this approach. The annual cross-sectional analysis and

the analysis of changes in health status over the course of the study

yielded generally insignificant results for all pollutants except ozone.

We recommend further application of these methods also.

While the effects measured for the pollutants generally varied with

the analytical method, ozone was found to have consistently positive

associations with health, most of them significant at the 10 percent



-viii-

level or better. The most probable explanation is that at the low

levels of ozone encountered in these two sites, ozone is correlated with

something else that produces short-run beneficial effects, such as

good weather.

LIMITATIONS

The most important limitation of the HIE was its exclusion of the

elderly, who are often regarded as being among the most susceptible to

air pollution. That exclusion also precluded an examination of the

effects of air pollution on mortality. Finally, the five-year run of

the HIE confined the analysis to short- and medium-term effects.

CONCLUSION

We have identified a promising method for measuring the health

effects of air pollution. However, before accepting this method or

discarding others, it is important that they all be tested further to

determine whether the results we have derived so far are more generally

applicable. We believe that the most efficient way to complete the

testing would be through the further analysis of panel data.
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I . INTRODUCTION

BACKGROUND

It has long been accepted that air pollution degrades the health of

persons exposed to it. Epidemiological studies have demonstrated

quantitative relationships between episodes of air pollution and acute,

short-term health losses. In laboratory studies, pulmonary function has

responded negatively in humans occupying closed chambers into which air

pollutants have been pumped. As for chronic, long-term effects, the

Chronic Obstructive Respiratory Disease Study conducted by the

University of California Los Angeles, has shown larger annual

decrements in lung function in persons living in Glendora, California,

than in less polluted Lancaster, California (Detels et al.,

forthcoming). Air pollution caused a number of deaths in the infamous

"killer fogs" of London and Donora, Pennsylvania. It is suspected that

air pollution has caused other deaths more insidiously through chronic

exposure (see, e.g., Lave and Seskin, 1977).

However, many observational studies of the effects of air pollution

have yielded results that have been suggestive at best. They have shown

that a given pollutant may affect a susceptible person under certain

circumstances while having no effects, or even counterintuitive effects,

for others. For example, Portney and Mullahy (1983) arrived at mixed

results that were quite sensitive to the analytical approach employed.

There may be several reasons why these studies have not been able

consistently to measure the adverse effects of air pollution. First,

the measures used may not have been sensitive enough to detect an

effect, or may have been applied where no effect exists. The effect may

be so small that it may be obscured by random variation, or it may

require carefully controlled conditions if it is to be measured. If

only sensitive persons are affected and then only marginally, sample

populations examined to date may have been too small. For instance, if

only one percent of sensitives respond adversely, a population would

have to contain several hundred sensitives to allow detection of the

effect.
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The second possible reason for failure to detect an effect is the

difficulty of defining the effect. Air pollution is not associated with

any specific disease. Respiratory effects of ambient air pollution have

generally been observed only in persons with lung function already

compromised by some condition such as asthma. Individuals with

unimpaired respiratory systems report a variety of effects of short-

term exposure, including headache, eye irritation, malaise depression,

and general irritability. Persons exercising in high levels of ozone

may experience nausea. Long-term exposure may have other effects.

Cigarette smoking, which is similar in some respects to breathing air

pollutants, increases the long-term risk of lung and bladder cancer.

ischemic heart disease, and other conditions. The sum of the effects of

air pollution could be quite large, while none of the diverse individual

effects may be large enough to measure. There is little basis for

grouping the effects prior to analysis, given their diversity. The

common association with a given pollutant that would allow grouping has

not been discovered yet.

The third reason is a complex of methodological and data problems.

These include the use of data aggregated over populations. unreliable

estimates of pollution exposure, lack of detail on health outcomes, and

incomplete data on population characteristics that may be correlated

with air pollution exposure. Many studies have relied on cross-

sectional data on a population's health outcomes, instead of on data

recorded at more than one point in time. With cross-sectional data,

pollution effects are underestimated if susceptible persons have moved

to areas with better air quality.

Finally, it is possible that these methodological difficulties are

not responsible for the inconsistent and negative results generated so

far. It may be that air pollution has no significant negative health

effect on most persons exposed to it, at least not at the levels

occurring in most American cities. (Of course, we know that air

pollution at high levels has serious and immediate adverse health

effects.)
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Obvious policy implications arise from the inability to obtain

consistent and reliable measurements of the adverse health effects of

air pollution, especially at moderate levels. Health officials and

environmental groups have expressed concern over those effects for many

years. This concern has been shared by a broad enough cross-section of

the general public to lend support to the passage of numerous federal,

state, and local laws regulating air quality. A growing realization of

the burden that those laws place on the national economy has recently

given rise to a more critical approach to the data linking air pollution

to adverse health effects. Although Congress mandated clean air policy

with respect to human health, regulatory agencies are increasingly

concerned with comparing the costs of regulation with the benefits,

monetary or otherwise, that can be realized from it. For example, if

ozone had no effects at the levels usually encountered, but moderate

levels of suspended particulates proved more costly in terms of health

effects than the measures taken to control them, then regulators could

focus on reducing particulates. With no available systematic

measurements of the health effects of air pollution, however, it is not

possible to estimate the benefits of air quality regulation--if indeed

there are any.

OBJECTIVES AND METHODS

This report discusses work in progress conducted by The Hand

Corporation under the sponsorship of the C.S. Environmental Protection

Agency, the purpose being to examine the effects of air pollution on

several indicators of health outcomes and health-related costs. For

this research we have analyzed data from a panel study of the nonaged

population in two cities with moderate levels of pollution, Dayton,

Ohio, and Seattle, Washington. We have been able to examine the

sensitivity of the measured effects to the use of alternative analytical

approaches, in particular panel and cross-sectional techniques.
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The Data

We were enjoined by EPA to use available data, rather than collect

new data specific to our purpose. The principal advantages of using an

existing data base are that the substantial costs of data collection

have already been incurred, and the study's results will be available

much sooner. There are also serious limitations, however: (1) The data

may not be ideal because they were collected for another purpose. As we

shall see below, a major drawback of the general population data sets is

the lesser quality of the air pollution exposure measures that we can

derive; the measurement error in the exposure estimates will yield

biased estimates of the adverse effects of air pollution. (2) The

population studied may not be fully appropriate to the analysis at hand.

(3) Using existing data sets means that we are conducting on

observational study, and such studies can yield estimates that are badly

biased (and in some cases, the bias is of indeterminate sign, a priori).

In the case of air pollution studies, the risk is that individuals who

are more susceptible to air pollution will move to less polluted areas

(e.g., Tucson), thus confounding the observed air pollution exposure

with the unobserved sickliness of the individual. That confounding will

yield underestimates of the adverse effect of air pollution.

Air quality data analyzed in this research are drawn from Storage

and Retrieval of Aerometric Data (SAROAD) and some state agencies.

Health outcome data are drawn from Rand's Health insurance Experiment

(HIE), conducted from 1974 to 1982 under a contract with the C.S.

Department of Health and Human Services. HIE data were collected at six

sites around the country. The analysis in this report is limited to

data from the two largest sites, Seattle and Dayton.

We used the HIE data for several reasons. First, they include

measurements of the use of medical services, and time lost due to illness

(e.g., from work or school) or due to restricted activity. Thus. we

can examine the effects of air pollution on several health outcomes.

Second, the data are measured continuously or repetitively over time,

enabling us to assess the sensitivity of the results to using both cross-

sectional and panel approaches to estimating the adverse effects of air

pollution. Third, it contains data on the prevalence of diseases at the
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outset of the experiment and on their incidence over the course of the

experiment, and on the occurrence of new episodes or exacerbations of

illnesses. Information is available on measures of physiological variables

over time, e.g., lung function at entry to and exit from the study. Thus,

the HIE data allow the assessment of physiological changes that may be

significant but too small to result in disease within the course of the

experiment. The HIE also includes data on socioeconomic status, health

status, health habits (e.g., smoking), and race and other demographic

variables. Such variables are important because they include risk factors

and confounding variables that must be controlled for if the effects of air

pollution are to be properly estimated. Fourth, outcomes are recorded

as they occur, allowing the elucidation of short-term effects through

correlations with daily pollution and weather data.

Other data sets were evaluated for use in this study. The reasons

for not accepting them are given in App. A.

Despite its advantages. the HIE does have four major limitations.

First, the sample excludes individuals who are over 62, eligible for

Medicare, on Medicare disability-. severely handicapped, in the military

or in households in the top 3 percent of the income range. The elderly

and the ill are believed to be especially susceptible to the adverse

effects of air pollution. As a result, estimates based on the HIE

understate the full social effects of air pollution. Conclusions about

threshold concentrations required for adverse effects may also be

biased. Second, HIE sites were chosen for their variation in access to

health care services. This limits the validity of intersite comparisons

of pollution effects, since pollution effects would be confounded with

variations in site characteristics that affect the use of services

(e.g., time delay in getting a doctor's appointment). Third, we had to

infer pollution exposure based on available ambient air quality data,

because the HIE data had already been collected. Thus, we could not

obtain the more reliable estimates of individual exposure that could be

derived from a microenvironmental analysis or personal monitoring. As a

result, our estimates of the response to air pollution will be biased

systematically toward zero (i.e., finding no effect). Fourth, this is

an observational study rather than a randomized trial. To the extent

that individuals may move or alter their behavior to minimize the adverse
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effects of air pollution, we will systematically understate the effects

of air pollution. In some of the results reported below, we have used

panel data techniques to reduce this bias, but we cannot be sure that

the techniques completely solve this problem.

The HIE and the variables drawn from it are discussed fully in Sec.

II.

Analytical Approach

In assessing the adverse effects of air pollution on health

outcomes--use of services, time lost to illness, and health status--

there are two major dimensions over which we have varied our analysis.

The first dimension is the choice between cross-sectional and panel

approaches to the estimation. The second is the length of time over

which we look for the effects of pollution.

Cross-sectional vs. Panel Approaches. In our analysis, we have

used both cross-sectional and panel approaches in estimation. In the

cross-sectional approach, we assign LO each individual measures of his

air pollution exposure based on the ambient air pollution at his work

and home locations. By comparing the health outcomes of different

people with different exposures, we can estimate the association of air

pollution with those outcomes.

The cross-sectional approach is simple, but may lead to

misestimates of the effect of air pollution for several reasons. The

most important is that people may have sorted themselves out across air

pollution zones based on their sickliness or other unobservable or

imperfectly observable characteristics. That is, cross-sectional data

may lead to biased estimates if the unobservable characteristics of the

populations studied are correlated with the observed explanatory

variables, including air pollution exposure.

For example, if air quality is too poor, individuals susceptible to

air pollution's adverse effects may leave the area studied or die. The

studies of respiratorily impaired persons in Tucson by Lebowitz,

Knudson, and Burroughs (1978) includes people who moved there in part

because of the perceived benefits of desert air for persons with lung

problems. In our study, asthmatics and other susceptibles may move from

the more to the less polluted areas of the city. In either case. areas
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with different levels of pollution would have a different mix of healthy

and sick individuals, with the cleaner areas having more sick people.

Comparing health outcomes cross-sectionally would understate the adverse

effects of air pollution, because the unobserved extra sickliness in

cleaner areas would dilute the effect of air pollution on the estimates.

In fact, if the geographical sorting is pronounced, we could find that

higher air pollution is associated with "better" outcomes, e.g., lover

use of medical services.

Cross-sectional estimates can also be biased in the other

direction, that is, they can overstate the effects of air pollution.

For example, if smokers are less likely to move away from smoggy areas

and if smoking behavior is imperfectly controlled for in the analysis,

then cross-sectional estimates would attribute part of the adverse

effect of smoking behavior to air pollution.

In either case, cross-sectional data can lead to biased estimates.

Without further information, the researcher cannot bound or estimate the

magnitude of the bias. nor determine its direction.

Despite the problem of bias from geographical sorting, we use a

cross-sectional approach as one way to analyze the effects of air

pollution on each individual in the sample.' Each point on our

regression line thus pairs one person's health outcome in a given year

of the study with his or her exposure to air pollution that year. By

comparing those results with our panel results, we can get some idea of

the empirical value of the former, which could be useful in assessing

the validity of other cross-sectional studies.

In the panel analyses, we use the presence of repeated observations

on each individual to control for unobservable individual

characteristics. Thus. in a panel study, we do not have to rely on the

untestable cross-sectional assumption that the unobserved

characteristics are uncorrelated with the observed independent

variables, including air pollution exposure.

Our approach is not always a pure cross-sectional one. In the
analysis of annual outcomes, we use data from the same people in
different years. However, the data are analyzed using the same
assumption used in cross-sectional analysis, that the error term is
independent of the covariates, especially air pollution.
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Panel analyses have three other major advantages over a cross-

sectional study. First, our panel studies can take advantage of finer

detail on timing of health events than do cross-sectional studies. The

finer detail permits better estimates of the weather and air pollution

exposure than is possible with data aggregated over longer periods of

time. Less precise estimates of air pollution can result in

underestimates of its effects on health. But, second, with a panel

study, we can still check any assumptions about the differences between

short- and long-term effects by examining the response in daily as well

as annual data. Third, our panel analyses retain the movers and deaths

occurring in the sample after baseline measurements, whereas in a pure

retrospective cross-sectional design, those who moved or died are not

around when the data are collected.

Nevertheless, panel studies have two major shortcomings relative to

cross-sectional studies. First, due to the higher cost of collecting

panel data, panel studies typically have fever participants than can be

studied in a cross -sectional analysis. This smaller sample size reduces

the precision available for detecting adverse effects. Second, pane!

methods, such as before-and-after comparisons, are limited to detecting

short- and intermediate-term effects, because the time frame for the

panel is frequently only a few years.

Duration of Effect. We have used a variety of time frames for our

analyses, because air pollution may result in both short-term and

intermediate-term adverse effects (long -term effects cannot be analyzed

using these data, which were collected over a three-to-five-year

period). A concern over irreparable damage has led to some emphasis on

intermediate to long-term effects in studies of susceptibles and

mortality However, we need to remember that major social costs may

arise from short-term responses in a general population. The losses per

individual may be small in a general population, but the large number of

individuals can make for a large total loss.

in what follows, we have examined the effects of pollution exposure

on use of services and time lost to illness in terms of both short-

term responses (daily responses to daily air quality variation). and a

somewhat longer-term annual analysis. We have also examined the effects
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of pollution exposure on health status in terms of both short-term

responses (air quality in the most recent month) and intermediate-term

responses (average exposure over 3 two-and-a-half to five-year period).

Specific Approaches Employed. We have not taken all possible

combinations of outcomes and time frames for both cross-sectional and

panel approaches. Some combinations were precluded by data limitations.

For example, we do not have daily data for our general health status and.

lung function measures. Some combinations were omitted because the cost

would have exceeded any likely benefit. For example, a cross-sectional

approach to short-term daily fluctuations in time lost to illness seemed

unduly expensive.

Four sets of analyses are reported below. The first, in Sec. III,

is essentially a cross-sectional approach to annual responses for use of

medical services and time lost to illness

The second set, in Sec. IV, considers the effect of recent air

pollution levels on a set of daily observations on the proportion of the

population ill or visiting a health provider. There is thus one data

point for the whole population for each day of the study. Because the

population is fixed over time and because individuals are not being

compared with other individuals, we avoid the problem of there being

unobserved population characteristics (e.g, susceptibility:) that are

correlated with pollution exposure, e.g., through geographical sorting.

(The population effectively acts as its own control.)

Our third set of analyses, in Sec. V, examines the effect of air

pollution on a set of daily observations for each person individually,

rather than collectively. Because we follow an individual over time, we

again avoid the problem of unobserved characteristics that are

correlated with air pollution exposure. This analysis has the potential

for improving on the second approach because it uses exposure estimates

that are tailored to the individual; this should reduce any misestimate

from using a single air pollution exposure value for a whole

metropolitan area.

Our final approach, in Sec. VI, examines the effects of air

pollution exposure (cumulative since the beginning of the study) on

individual health status at the end of the study. Each individual's

exit health is regressed on air pollution and entrance health. This
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variant on a before-and-after comparison nets out any unobservable

characteristics that may be correlated with air pollution exposure.

We apply each of these four methods to estimate the effects of air

pollution on one or more of the following health variables:

Probability of use of any outpatient health care services

Expenditures on outpatient health care services per user

Time lost to illness (including time lost from work, school,

and other usual activity)

A subjective measure of general health (tested for its

reliability)

Lung function

In the next section, we discuss the data we analyzed. Subsequent

sections describe each of our methods and their results.

LIMITATIONS

In examining our results and conclusions, it is well to keep the

limitations of our study in mind. The most important is that this is an

observational and not an experimental study. Although the study relies

on data from a randomized study, the randomization was for health

insurance, not air pollution. Families with members who are susceptible

to air pollution may choose to live in less polluted areas. As

discussed above, this can lead to biased results. While our panel

techniques are an improvement over cross-sectional approaches in

reducing geographical sorting bias, they do not yield the kind of safe

conclusions that can be drawn from experiments.

Second, in this study, we have not been able to examine the effect

of air pollution on life expectancy. The sample is not large enough to

look at mortality in the. nonaged The exclusion of the aged makes it

doubly difficult to discern changes in survival, by reducing the sample

size and by excluding the group at highest risk. In addition, the

exclusion of the elderly means that our estimates of other health effects

are understated. For example, the elderly are believed to be especially

susceptible to air pollution. They also account for a disproportionate

share of total time lost to illness, and of medical expenditures.
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Third, our measure of exposure to air pollution is based on ambient

monitoring sites linked to residence and work locations. The measure

could be improved if we had data on housing and work characteristics

(e.g. type of space heating or air conditioning), or if we knew actual

individual exposures directly. The error in our measures probably

biases our estimates of the effects of air pollution toward zero.

Finally, this report is limited to two sites; hence, at this point

we do not know how generalizable our results are.
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I I . DATA AND SAMPLE

The data for this analysis are drawn from two sources. First, the

source of data on sociodemographic variables, health status and habits,

use of health services, and time lost due to illness is the Health

Insurance Experiment (HIE). Second, the sources of data on air quality

and weather are Storage and Retrieval of Aerometric Data (SAROAD), the

Washington State Implementation Plan (SIP) data bases, and the National

Weather Service.

THE HEALTH INSURANCE EXPERIMENT

The HIE is a randomized trial of the effects of different health

insurance arrangements on the demand for health services and the health

status of individuals. The HIE enrolled families in six sites:

Dayton, Ohio; Seattle, Washington; Fitchburg, Massachusetts; Franklin

County, Massachusetts; Charleston, South Carolina; and Georgetown

County, South Carolina. This analysis uses data from the Seattle and

Dayton sites. In each site, families enrolled for either three or five

years.

Families participating in the experiment were assigned to 14

different fee-for-service or two prepaid group practice insurance plans.

The fee-for-service plans had different levels of cost sharing, which

varied over two dimensions: the coinsurance rate and an upper limit on

out-of-pocket expenses. The coinsurance rates (percentage paid out-

of-pocket) were 0, 25, 50, or 95 percent for all health services. Each

plan had an upper limit (the maximum dollar expenditure or MDE) on out-

of-pocket expenses of 5, 10, or 15 percent of family income, up to a

maximum of $1,000. Beyond the MDE, the insurance plan reimbursed all

expenses in full. One plan had different coinsurance rates for

inpatient and ambulatory medical services (25 percent) than for dental

INewhouse (1974) and Brook et al. (1979), provide fuller
descriptions of the design. Newhouse et al. (1979) discuss the
measurement issues for the second generation of social experiments, to
which the HIE belongs. Ware et al. (1980) discuss many aspects of data
collection and measurement for health status.
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and ambulatory mental health services (50 percent). Finally on one

plan, the families faced a 95-percent coinsurance rate for outpatient

services, subject to a $150 annual limit on out-of-pocket expenses per

person ($450 per family). In this plan, all inpatient services were

free, so that, in effect, this plan had an outpatient individual

deductible. All plans covered the same wide variety of services.?

Two groups were enrolled in a prepaid group practice or health

maintenance organization (HMO) in Seattle only. The HMO in this study

is Group Health Cooperative of Puget Sound (GHC), a nonprofit

organization that has been operating in the Seattle metropolitan area

since 1946. The first of these two groups is the GHC experimentals,

which is a random sample of the Seattle population that was not enrolled

in GHC at the beginning of the experiment. This group received all

services free of charge at GHC. If GHC did not provide the service, the

plan fully covered services received outside GHC. The second group is

the GHC controls, which is a random sample of families that had been

enrolled at GHC for at least one year in 1976. The GHC control group

received all care at GHC free of charge except for limited cost sharing

on drugs, supplies, and outpatient mental health services.

To study methods effects, the HIE had three other randomized

subexperiments. First, to increase precision in measuring changes in

health status, some households were given a preexperimental physical

examination; to test for a possible stimulus to utilization, the

remaining households received no examination. Second, to measure sick-

and work-loss days, and telephone utilization, some households filled

out a diary on contacts with the health care system and on time lost to

illness. To test for a stimulus of reporting on the use of services,

some households filled out no forms, some filled them out weekly, and

some biweekly. Third, to test for transitory aspects of the study, some

households were enrolled for three years, others for five years.

.

2See Clasquin (1973) for a discussion of the reasons for the HIE
structure of benefits. Nonpreventive orthodontia and cosmetic surgery
(not related to preexisting conditions) were also not covered. In the
case of each exclusion, it is questionable whether anything could have
been learned about steady-state demand during the three-to-five-year
lifetime of the experiment. Also excluded were outpatient psychotherapy
services in excess of 52 visits per year per person.
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Families were enrolled as a unit with only eligible members

participating. No choice of plan (or other experimental treatment) was

offered; the family could either accept the experimental plan or choose

not to participate. To prevent refusals, families were given a lump-

sum payment equal to their worst-case financial risk associated with the

plan; thus, no family was worse off financially for being in the study.3

In Seattle, we found no unintended differences between the group

that accepted and the group that refused the offer to participate in the

study; see Manning et al. (1984). A similar analysis shows no

difference in Dayton; see Newhouse et al. (1982).

THE SAMPLE

The sample is a random sample of each site's population, but the

following groups were not eligible: (1) those 62 years of age and.

older; (2) those with incomes in excess of $25,000 in 1973 dollars (or

$56,000 in 1983 dollars); (3) those eligible for the Medicare disability

program; (4) those in jail and those institutionalized in long-term

hospitals; (5) those in the military or their dependents; and (6) those

with service-related disabilities.

The sample used in this analysis includes enrollees during each

full year that they participated. We excluded data on partial years of

participation by newborns, adoptees, suspended participants (e.g., those

who joined the military), participants who left the study before its

completion, and people who moved out of the Seattle and Dayton areas.4

A person who, for example, attrited in year 2, was included in year 1 if

'Families were assigned to treatments using the Finite Selection
Model (Morris, 1979). This model is designed to achieve as much balance
across plans as possible while retaining randomization; that is, it
reduces correlation of the experimental treatments with health,
demographic, and economic covariates.

The family's nonexperimental coverage was maintained for the family
by the HIE during the experimental period with the benefits of the
policy assigned to the HIE. If the family had no coverage, the HIE
purchased a policy on their behalf. Thus, no family could become
uninsurable as a result of their participation in the study.

40ut-of-area moves were excluded so that we could inexpensively
calculate the exposure of each participant.
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he participated for all of that year. We excluded such cases because

the statistical models used in this study for expenditures require equal

time periods for each observation; that is, because they do not allow

convolution of observations. Thus, the people who participated for only

part of a year could appear to be different when their underlying

behavior was in fact the same. The omission of individuals enrolled for

a part year does not bias our comparisons because these individuals used

health services at the same rate as full-year individuals with similar

characteristics (see Manning et al., 1985, for Seattle; a similar

analysis is under way for other sites).

For specific analyses, the sample was further reduced because of

missing data. For example, in the analysis of time lost due to illness,

we include only those individuals who filed health diaries for two

years. Individuals who were randomly assigned to the no-health-diary

subexperiment or who did not file the required forms were excluded.

Independent Variables

We used five groups. of independent variables: insurance plan and

other experimental treatments, health status measures, smoking

variables, sociodemographic and economic measures, and measures of

exposure to various pollutants. These variables are described below.

Insurance Plan Variables. We have used dummy variables to

represent the insurance plans, one for each of the following insurance

plans: the GHC controls; any fee-for-service plan with out-of-pocket

cost-sharing (25-percent, 50 percent, or 95 percent) for the family; and

a fee-for-service insurance plan with a family coinsurance rate of zero

percent (free care). The GHC experimental plan was the omitted group in

Seattle and the free fee-for-service plan was the omitted group in

Dayton against which comparisons were made.

Measures of Health Status. We used four measures of health status

to increase the precision of our estimates of the consumption of

ambulatory medical services: (1) general health perceptions; (2)

physical limitations; (3) chronic disease status; and (4) mental health

status. Each of these measures is based on the self-administered

Medical History Questionnaire for individuals 14 years or older.

Measures for children are based on questionnaires filled out by parents.
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All of the health status data used in this report were collected at the

beginning of the study; a summary description of each is presented

below.

The General Health Index (GHI) is a continuous score from 0 through

100 based on 22 questionnaire items for individuals aged 14 and over and

7 items for children (aged less than 14). The items measure perceptions

of health at present, in the past, and in the future; the items also

measure believed resistance to illness and health worry. GHI refers to

health in general and does not specify a particular component of health.

The construct is a subjective assessment of personal health status. The

reliability and validity of GHI have been extensively studied and

documented (Ware, 1976; Davies and Ware, 1981; and Eisen et al. (1980)).

One reason we chose the GHI was that the results of extensive

validity testing could be used to place some perspective on observed

differences resulting from air quality. For instance, the impact of

chronic diseases, everything equal, is 5.6 points for hypertension and

10 points for chronic obstructive pulmonary disease or diabetes (Brook,

1983). People with FEVl/predicted FEV15 of 45 percent or less had a GHI

25 points lower on average than those with 91 percent or more. The

death rate in the study was 25/1,000 for those with GHI under 63,

6/1,000 for those with GHI from 63 to 76 and 1/1,000 for those with GHI

from 76 to 100.

The physical limitations measure is scored dichotomously (PHYSLM:

1 =limited, 0 otherwise) to indicate the presence of one or more

limitations due to poor health. It is based on 12 questionnaire items

for adults and 5 items for children measuring four categories of

limitations: self-care (eating bathing, dressing); mobility (confined,

or able to use public or private transportation); physical activity

(walking, bending, lifting, stooping, climbing stairs, running); and

usual role activities (work, home, school). The reliability and

validity of these measures have been studied and documented by Stewart

et al. (1977, 1978, 1981a, 1981b), and Eisen et al. (1980).

'Forced expiratory volume in one second is a measure of lung
function.
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The disease measure is a simple count of the number of diseases or

problems (out of a possible 26), for individuals aged 14 or more

(Manning, Newhouse, and Ware, 1982). The disease list includes kidney

disease and urinary tract infections, eye problems, bronchitis, hay

fever, gum problems, joint problems, diabetes, acne, anemia, heart

problems, stomach problems, varicose veins, hemorrhoids, hearing

problems, high blood pressure; hyperthyroidism, and ten other diseases

or problems.

The Mental Health Inventory (MHI) is based on 38 questionnaire

items measuring both psychological distress and psychological well-

being, as reflected in anxiety, depression, behavioral and emotional

control during the last month, general positive effect and interpersonal

ties. The reliability and validity of this measure has been studied and

documented by Veit and Ware (forthcoming); Ware, Veit, and Donald

(forthcoming); Ware et al. (1979, 1980); and Williams et al (1981). We

used a similar construct for children aged 5 to 13, based on 12

questionnaire items (Eisen et al., 1980).

Smoking Variables. The model used in our analysis also contained

covariates for smoking status. These included dummy variables for

whether an individual was a cigarette smoker, an exsmoker, a never

smoker in a family of a smoker, and a never smoker in the household of

an exsmoker. A never smoker in a family of never smokers is the omitted

group. The categories are defined to be mutually exclusive.

Other Covariates. The model used in our analysis also included

covariates for age, sex, race, family income, and family size. With the

exception of family size, the data were collected before or at

enrollment in the study.

Table 2.1 provides means for a number of these variables for the

enrollment sample. Additional details on health status are available in

Sec. VI.
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Table 2.1

SAMPLE CHARACTERISTICS

Dayton Seattle

Standard Standard
Variable N Mean Deviation N Mean Deviation

.

.

Age
Female
EDUCDEC
Income[l]
AFDC
Black
Family size
GHINDX[2]
DISEA[3]

1139 6.069 17.141 3095 25.535 15.978
1139 0.524 0.500 3095 0.512 0.500
1139 12.325 2.692 3095 13.012 2.409
1019 29600 13990 2986 37000 18300
1019 0.048 0.214 2986 0.057 0.230
1139 0.111 0.314 3095 0.027 0.161
1139 3.873 1.780 3095 3.395 1.578
1139 73.183 7.818 3059 73.476 15.539
530 13.732 9.585 2178 11.900 8.626

NOTE: N indicates numbers of complete users.
[1] In June 1984 dollars.
[2] In Dayton, this is a replacement value based on responses

to questions about health, pain, and worry.
[3] Count of chronic health problems, adults only.

Exposure Estimation

Assessing the relationships between health outcomes and exposure

requires an estimate of the exposure of individuals to air pollution.

Ideally, personal monitoring and microenvironmental analysis in

workplace, home, and other places in which these individuals spend time

could have provided this estimate. Unfortunately, we could not

personally monitor the participants or conduct surveys to obtain these

better estimates, because this research was initiated well after the HIE

data collection effort ended. Instead, we used the SAROAD data base to

estimate the exposure for each residence and work location based on air

pollution levels at nearby local monitoring stations.

Data Sources. The HIE provided data on the residence location zip

code of each participant at his entry into the study., and the date and

location of each new permanent change in address thereafter. The HIE

also provided data at intervals of approximately every six months on the

labor force status of all adults, and the zip code for each employer on
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the date surveyed. We use these two sets of data to implement a crude

microenvironmental analysis.

We obtained daily data on air pollutants from SAROAD for the

criteria pollutants (total suspended particulates (TSP), sulfur dioxide,

nitrogen dioxide, oxidants, and carbon monoxide) for the Seattle-Everett

and Dayton areas, including some outlying areas. We obtained data on

the coefficient of haze and additional NO2 data from the Department of

Ecology for the state of Washington. The National Weather Service

provided data on precipitation and temperature (minimum, maximum, and

average daily values). In each case, the data covered the same period

of time as the experimental period of the HIE, which was November 1974

through February 1980 in Dayton, and January 1976 through September 1981

in Seattle.

The number of monitoring sites for each pollutant varied by city

and over time. We were able to use data from only a subset of the

stations. Some stations were operational for only part of the period,

and some had incomplete data when operational. To avoid possible data

quality problems, we used only those stations which consistently

reported air pollution levels over a sufficiently long time period. Our

criteria for consistent reporting were that the monitoring site had to

have at least six consecutive months of data for the pollutant of

interest, and that each month had to include at least fifteen days of

data. In the case of TSP, we generally accepted months with at least

four 24-hour measurements, because TSP is routinely measured every six

days.6

Missing Values. We did accept data from monitoring sites with

minor breaks or gaps in their daily or hourly values, because monitoring

sites are down for routine maintenance. For monitoring sites with

missing hourly or daily values in a specific day, we replaced the

missing values with imputed values based on the diurnal pattern of

pollution levels, estimated from an additive two-way ANOVA model that

identified the diurnal pattern and the effect of the day. For TSP, we

used a similar model to impute missing daily values based on the day of

the week pattern.

6We made exceptions to the general criteria on the number of days
in a month when the station was the only one reporting in that month.
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Estimating Daily Exposures. The process for estimating daily

exposures for each person involved three steps: calculating daily

summaries for each monitoring site, creating a location history for each

individual, and matching each individual's location history to

monitoring sites.

For each monotoring site collecting hourly data, we calculated

daily summaries of the pollutant levels. These included daytime and

nighttime averages and maximums. The daytime values were based on

readings from 8 AM to 6 PM and nighttime from from 6 PM to 8 AM. The

analytic day was defined as the period from 6 PM on the previous

calendar day to 6 PM on the day in question. This seemed to be a

behaviorally more meaningful definition of a day than the usual midnight

to midnight definition.

We developed a daily time series for each individual's daytime and

nighttime locations, using the residence and work data described above.

For the nighttime location, we used the home zip code, because our work

data did not include information on which shifts were worked. For the

daytime location for workers, we used the work zip code of the employer

mentioned on the temporally nearest survey of work information. For

children and for adults without paying jobs (e.g., housewives and the

retired), we used the home zip code. We assumed that children attended

neighborhood schools. For all individuals, we used the home zip code

for the weekend. The HIE data on employment did not provide the

information necessary to do a finer breakdown of work days and hours.

We then linked, day by day, each person's daytime and nighttime zip

code to the daily summary for the geographically nearest monitoring site

for each pollutant. The distance between the individual zip code and

the monitoring station was measured using the latitude and longitude of

the zip code's post office and the monitoring site's location. Although

it would have been preferable to match the population center of mass for

each zip code, we believe that the approximation error is minor in our

case. Zips with high population densities have small areas, leading to

only a small error in distance. Zip codes with low densities and large

areas were typically in rural areas with clean air and few alternatives

for matching. Tables 2.2 and 2.3 show the frequency of individuals by
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Table 2.2

SEATTLE RESIDENCE ZIP CODES AND MAP COORDINATES

Zip Code Count Percent Latitude Longitude

98002 228 7.37
98003 103 3.33
98004 45 1.45
98005 9 0.29
98006 44 1.42
98007 101 3.26
98008 27 0.87
98011 78 2.52
98020 155 5.01
98022 3 0.10
98027 35 1.13
98031 124 4.01
98033 188 6.07
98036 94 3.04
98040 72 2.33
98043 56 1.81
98047 25 0.81
98052 49 1.58
98055 135 4.36
98062 4 0.13
98072 2 0.06
98100 3 0.10
98101 5 0.16
98102 29 0.94
98103 101 3.26
98104 3 0.10
98105 42 1.36
98106 63 2.04
98107 22 0.71
98108 18 0.58
98109 24 0.78
98111 3 0.10
98112 35 1.13
98115 103 3.33
98116 38 1.23
98117 46 1.49
98118 61 1.97
98119 48 1.55
98121 3 0.10
98122 56 1.81
98125 57 1.84
98126 12 0.39
98133 60 1.94

47.31
47.31
47.58
47.61
47.61
47.61
47.50
47.72
47.79
47.21
47.56
47.40
47.68
47.84
47.58
47 80.
47.27
47.64
47.48
47.47
47.75
47.63
47.61
47.63
47.68
47.60
47.66
47.52
47.68
47.52
47.59
47.63
47.63
47.68
47.55
47.63
47.56
47.63
47.61
47.61
47.71
47.54
47.73

122.23
122.31
122.17
123.15
122.15
122.15
122.23
122.22
122.34
121.99
122.07 
122.25
122.19
122.29
122.19
122.30
122.25
122.15
122.20
122.36
122.16
122.33
122.33
122.31
122.34
122.33
122.31
122.35
122.37
122.30
122.36
122.33
122.33
123.30
122.38
122.33
122.28
122.36
122.34
122.31
122.30
122.37 
122.34
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Table 2.2 (cont.)

Zip Code Count Percent Latitude Longitude

98136 51 1.65 47.53 122.39
98144 59 1.91 47.59 122.29
98146 27 0.87 47.48 122.35
98148 5 0.16 47.44 122.31
98155 37 1.20 47.75 122.29
98166 48 1.55 47.43 122.34
98168 131 4.23 47.47 122.30
98177 40 1.29 47.73 122.36
98178 35 1.13 47.50 122.25
98188 63 2.04 47.40 122.28
98199 29 0.94 47.65 122.40
98201 40 1.29 47.96 122.23
98203 56 1.81 47.97 122.20
98204 62 2.00 47.92 122.20
98206 3 0.10 47.96 122.23
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Table 2.3

DAYTON RESIDENCE ZIP CODES AND MAP COORDINATES

Zip Code Count Percent Latitude Longitude

45305
45324
45342
45377
45402
45403
45404
45405
45406
45407
45408
45410
45414
45415
45417
45418
45419
45420
45424
45426
45427
45429
45431
45432
45439
45440
45449
45459

44 3.86 39.64 . 84.07
47 4.13 39.80 84.02
52 4.57 39.66 84.27
60 5.27 39.89 84.19
2 0.18 39.76 84.19

45 3.95 39.76 84.15
15 1.32 39.79 84.17
52 4.57 39.79 84.22
15 1.32 39.79 84.24
34 2.99 39.76 84.22
32 2.81 39.74 84.22
19 1.67 39.75 84.16
44 3.86 39.82 84.21
47 4.13 39.82 84.25
19 1.67 39.75 84.25
32 2.81 39.72 84.25
78 4.85 39.71 84.16
65 5.71 39.72      84.14
157 13.78 39.83 84.14
14 1.33 39.80 84.29
15 1.32 39.75 84.28
44 3.86 39.68 84.15
24 2.11 39.77 84.10
78 6.85 39.74 84.10
9 0.79 39.69 84.22

19 1.67 39.66 84.11
7 0.61 39.67 84.24

70 6.15 39.65 84.19
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home location on the first day of the study, and the corresponding

latitude and longitude. Table 2.4 and 2.5 show the monitoring sites

used in our analysis for each pollutant, and their latitude and

longitude.

These daily summaries for each individual provided the exposure

data for the analysis of the individual daily time series of episodes of

sickness (see Sec. V) and provided the basis for longer-term summaries.

For each pollutant, we calculated each individual's monthly, yearly, and

study-long average and maximum exposure to each pollutant. We also

calculated the average of the daily maximums.

For the aggregate time series, we used a different approach to

estimating air pollution exposure. For that analysis, we used only one

observation for each day. In both Dayton and Seattle, we used the

readings from downtown monitoring sites as our estimate of air pollution

exposure. Clearly, this approach misestimates the exposure of

individuals who live some distance from the central area. To use better

individual estimates requires either doing a cross-sectional analysis or

turning to the individual time series analysis.

Tables 2.6 and 2.7 provide summary statistics on the daily

pollution levels for calendar year 1976 used in the aggregated time

series. Because the values are from centrally located monitoring

locations, the pollution levels present a worst-case summary for the

daily levels. Tables 2.8 and 2.9 provide a summary of the annual level

of exposure for the pollutants used in the annual analysis of Sec. III.

The unit of observation is a person for one year. Hence, each area of

the two cities is weighted by the number of people who live and work

there, fully adjusted for changes in residence and employment. Tables

2.10 and 2.11 provide a summary of the cumulative exposure for each

pollutant over the course of the study for the pollutants used in the

before-and-after analysis of health status in Sec. VI. The unit of

observation is a person. Hence each area of the two cities is weighted

implicitly by the amount of time that people live and work there.
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Table 2.4

DAYTON MEASURING STATIONS AND MAP COORDINATES

Station Latitude Longitude CO COH NO2 OZONE SO2 TSP

0800001G01 39.83 84.42
1100001G01 39.63 84.17
1260001G01 40.00 83.80
1660002G01 39.77 84.21
1660003601 39.76 84.19
1660014601 39.76 84.19
1660015G01 39.77 84.18
1660017G01 39.75 84.24
1660019G01 39.81 84.19
1660021601 39.75 84.13
1660022G01 39.70 84.31
1660025G01 39.76 84.20
1660026G01 39.75 84.19
1940001G01 39.74 84.63
2040001G01 39.79 84.03
2040003G01 39.83 84.00
2440002601 39.63 84.37
2640001G01 40.10 84.63
2640002G01 40.10 84.61
2985001G01 39.87 84.14
3240002601 39.70 84.14
3240003601 39.73 84.19
4280002G01 39.65 84.28
4500001G01 39.79 84.13
4500002G01 39.80 84.35
4500003G01 39.85 84.33
4500004G01 39.79 84.13
4500005G05 39.64 84.22
4550001G01 39.71 84.21
4760001G01 39.94 84.02
4790001G01 39.74 84.39
5100001G01 39.72 84.18
5520002G01 40.14 84.23
5520003G01 40.14 84.24
5520004G01 40.14 84.21
5640001G01 39.84 84.72
6380001G01 39.93 83.81
6380002601 39.95 83.76
6380003G01 39.91 83.77
6380004G01 39.92 83.81
6580001G01 39.96 84.17
6660001G01 39.80 84.30
6680001G01 40.04 84.20
6880001G01 39.90 84.21
6880003G01 39.89 84.20
7300001G01 39.96 84.33
7670001G01 39.81 84.03
7720001G01 39.70 83.93
7720002G01 39.71 83.93
7740001G01 39.80 83.89

X
X
X

X X X
X

X X X
X

X

X

X

X

X

X

X

X
X
X

X
X
X

X X

X
X

X
X
X
X
X
X

X
X
X

x
X
X

X X

X
X
X
X

X
X
X

X
X
X

X
X
X
X
X
X
X
X
X
X
X
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Table 2.5

SEATTLE MEASURING STATIONS AND MAP COORDINATES

Station Latitude Longitude COH NO2 OZONE SO2 TSP

0100003101
0120002101
0120004F01
0180001F01
0180002101
0640003101
0960001101
0960002101
0980001103
0980010F01
0980013101
0980014102
1560002F01
1760002101
1760003101
1840001101
1840301P01
1840007101
1840009101
1840057102
1840058101
1840059F01
1840066102
1840068101
1840072F01
1840073101
1840074F01
1840079F01
1840080F01
2100001101
2140001101
2140001P01
2140003101
2140004102
2140005101
2140006101
2140013101
2140015101
2140017F01
2195001101
ST1776K64B
ST2718P46B
ST2718P47B
ST3100S05B

47.31
47.61
47.61
47.57
47.58
47.98
47.40
47.39
47.70
47.55
47.33
47.35
47.16
47.48
47.48
47.60
47.60
47.66
47.62
47.56
47.45
47.54
47.57
47.52
47.56
47.70
47.60
47.60
47.57
47.40
47.25
47.25
47.27
47.26
47.30
47.24
47.28
47.23
47.20
47.46
47.51
47.09
47.11
48.08

122.23
122.20
122.20
122.62
122.61
122.21
122.23
122.23
121.79
122.04
122.31
122.46
122.51
122.20
122.21
122.33
122.33
122.39
122.35
122.27
122.28
122.33
122.35
122.32
122.31
122.34
122.33
122.33
122.31
122.22
122.44
122.43
122.51
122.41
122.42
122.40
122.52
122.43
122.49
122.25
122.30
122.62
122.64
122.19
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X
X
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X

X

X
X

X
X

X
X

X
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Table 2.6

1976 DAILY AIR POLLUTION LEVELS:
SEATTLE AGGREGATED TIME SERIES

Pollutant

Measure
Average,

so2

Average
COH

Maximum
Ozone

Mean
Std. Dev.
Quantiles

100
99
95
75
50
25
5
1
0

0.00977 0.788 0.0284
0.00964 0.518 0.0132

0.0642 2.492 0.07
0.0454 2.368 0.07
0.0260 1.817 0.05
0.0150 1.082 0.04
0.0071 0.602 0.03
0.0021 0.388 0.02
0.0004 0.226 0.01

0  0.156 0.01
0 0.105 0

n 251 362 257

NOTE: Sample sizes vary due to incomplete
pollutant data.

Table 2.7

1976 DAILY AIR POLLUTION LEVELS:
DAYTON AGGREGATED TIME SERIES

Pollutant

Measure
Average Average Average Maximum Average

so2 COH  TSP Ozone NO2

Mean 0.0152
Std. Dev. 0.0127
Quantiles

100 0.0893
99 0.0625
95 0.0368
75 0.0212
50 0.0112
25 0.0061
5 0.0021
1 0
0 0

0.273 106.44 0.0718 0.0244
0.159 40.21 0.0396 0.0113

1.026 277.0 0.190 0.0648
1.018 232.6 0.173 0.0592
0.610 180 0.150 0.0438
0.350 128 0.095 0.0315
0.234 99 0.065 0.0226
0.160 79 0.040 0.0158
0.101 52 0.020 0.0083
0.087 33 0.010 0.0054
0.087 17 0.005 0.0035

n 310 102 366 361 332

NOTE: Sample sizes vary due to incomplete pollutant
data.
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Table 2.8

ANNUAL AIR POLLUTION SUMMARY: SEATTLE

Pollutant

Measure
Average

so2

Average Average Maximum
COH TSP Ozone

Mean
Std. Dev.
Quantiles

100
99
95
75
50
25
5
1
0

UnitS
n

0.0101 0.603 60.83 0.1203
0.0025 0.117 15.02 0.0340

0.0143
0.0143
0.0135
0.0122
0.0102
0.0089
0.0052
0.0047
0.0041

9707 7609 9707 9707

0.889 123.81 0.17
0.880 112.76 0.17
0.863 92.58 0.17
0.662 66.62 0.16
0.608 57.89 0.12
0.532 51.18 0.10
0.435 41.84 0.07
0.320 40.13 0.06
0.280 25.46 0.05

NOTE: Sample size for COH is lower due to incomplete COH
data in some years.

Table 2.9.

ANNUAL AIR POLLUTION SUMMARY: DAYTON

Pollutant

Measure
Average Average Average Maximum

9 COH TSP Ozone

Mean
Std. Dev.
Quantile

100
99
95
75
50
25
5
1
0

0.0105 0.189 70.17 0.155
0.0039 0.053 13.01 0.033

0.0265 0.313 120.26 0.200
0.0160 0.284 106.81 0.200
0.0154 0.275 97.14 0.200
0.0145 0.249 76.71 0.190
0.0112 0.170 67.28 0.145
0.0073 0.146 60.66 0.127
0.0049 0.130 53.65 0.115
0.0048 0.127 47.32 0.089
0.0005 0.097 32.27 0.170

N 3989 2156 3992 3992

NOTE: Sample sizes vary due to incomplete
COH data for some years.
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Table 2.10

AVERAGE EXPOSURE OVER THE STUDY: SEATTLE
(n = 2386)

Pollutant

Average
Average Average Maximum Average

Measure
so2 TSP Daily Ozone COH

Mean
Std. Dev.
Quantiles

100
99
95
75
50
25
5
1
0

0.0101 61.02 0.0294 0.642
0.0018 10.98 0.0013 0.088

0.0123 108.22 0.0328 1.038
0.0122 100.17 0.0321 0.821
0.0119 83.42 0.0313 0.821
0.0115 67.10 0.0301 0.683
0.0111 59.45 0.0296 0.637
0.0084 53.37 0.0286 0.581
0.0067 46.92 0.0272 0.505
0.0065 43.85 0.0261 0.456
0.0061 42.05 0.0254 0.448

Table 2.11

AVERAGE EXPOSURE OVER THE STUDY: DAYTON
(n = 956) 

Pollutant

Measure

Average
Average Average. Maximum Average

SO:! TSP Daily Ozone COH

Mean 0.0113 70.47 0.0524 2.341
Std. Dev. 0.0021 11.04 0.0062 0.273

Quantiles
100
99
95
75
50
25
5
1
0

0.0141 102.49 0.0695 2.723
0.0141 98.42 0.0659 2.722
0.0141 92.97 0.0637 2.711
0.0139 76.10 0.0585 2.617
0.0110 68.31 0.0501 2.431
0.0095 61.28 0.0479 2.025
0.0080 57.23 0.0447 1.949
0.0079 33.59 0.0437 1.931
0.0079 51.86 0.0431 1.855
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Unit of Analysis

The unit of analysis is a person-year for the annual analysis, a

day for the aggregated and individual time services analysis, and a

person for the cumulative health status analysis. See the following

sections for further details.

Dependent Variables

In this report, we focus on three sets of health outcomes: use of

health services, time lost due to illness, and health status. Here we

provide a brief overview of the outcomes. The following sections

provide greater detail.

Use of Health Services. We have confined our analysis largely to

medical services delivered in an ambulatory setting, excluding

outpatient psychotherapy and dental services.' In Dayton, we use actual

expenditures as a measure of the use of medical services. In Seattle,

we use imputed expenditures so that we may include the GHC participants

in the analysis. Excluding that group would degrade our precision

substantially. For GHC participants, expenditures include both in- and

out-of-plan use. Claims filled by participants provide data on the

amount and type of fee-for-service use. Abstracted medical records

provide data on amount and type of use at GHC (see Goldberg, 1983). We

use expenditures where possible rather than visits because expenditures

reflect the intensity of the service provided as well as the frequency

of use. In the aggregated time series analysis, we use the probability

of any use on that day.

Because GHC does not bill its patients for services rendered, there

is no readily available, preexisting measure of the aggregate value of

procedures provided. Instead, we have imputed a value to procedures

provided by GHC based on the California Relative Value Study codes. To

preserve comparability, the same imputation has been made for procedures

provided in the Seattle fee-for-service sector. See Manning et al.

(1984) for further details.

'In Seattle we also exclude drugs and supplies, because we have not
developed an imputation algorithm for drugs and supplies obtained at
GHC.
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Time Lost to Illness. We examine the association of air pollution

(daily or annual) and the amount of time that an individual is ill. The

HIE provides data on days lost from work, school, or usual activities

from the health diary system. For children, we know when a child was

ill or took time off from school or merely restricted his or her

activities. For adults, we know when a person missed work or restricted

activities because of illness. We know the dates involved if a person

(e.g., a mother) missed work or school in order to visit a doctor or to

care for another family member. In the case of workers, we have data on

sick-leave provisions and know if the time off was used for a particular

sick-loss day. The HIE data on time lost to illness do not contain any

information on symptoms or diagnoses. Therefore, it is impossible to

separate sick-loss days related to air pollution from those which are

not.

Health Status. We also examine the association between air

pollution and changes in health status between the beginning and end of

the study. The HIE collected data on subjective assessments of health

as well as obtaining objective measures of lung function, cholesterol,

and other physiological conditions.

We use the general health index (GHI) described earlier as a single

unifying measure of health status. Data for this subjective assessment

were collected at entry into the study, and annually thereafter.

Because data were collected for everyone, we can examine effects in a

general population.

In addition to a general measure, the HIE collected data on the

presence and severity of the more common chronic health diseases and

problems. In this study, we use seven measures related to

cardiopulmonary problems:

(1) The shortness-of-breath scale is a five-point scale ranging

from no shortness of breath to severe shortness of breath. The

scale is based on responses to four questions on a self-

administered questionnaire (Rosenthal et al., 1981).

(2) Chronic bronchitis is based on self-reported information

regarding phlegm production, prior diagnosis, and treatment by

a physician (Foxman, Lohr, Brook, et al., 1982).
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(3) Hay fever is a three-point scale, with separate categories for

never had hay fever, had hay fever in the past but not the last

12 months, and had hay fever in the last 12 months (Beck et

al., 1981, 1983).

(4) An eight-point scale for asthma for children (aged 5-13) with a

value of 0 for those who did not have asthma in the last 12

months, and values 1-7 that are based on the duration of the

condition in the past 12 months (Beck et al., 1981, 1983).

(5) A seven-point scale for chest pain, with categories

corresponding to the frequency of chest pain from no-chest pain

to chest pain almost every day (Rosenthal et al., 1981).

(6) Exercise Pain is a three-point scale with categories for never

have chest pain, have pain when walking fast or uphill, and

have pain when walking normally on level ground (Rosenthal et

al., 1981). This measure differs from the prior one, in that

it covers chest pain while exercising. Used only in Dayton

because measure (5) was not available for that site.

(7) For individuals over 20, the HIE provides data on lung function

from spirometry tests. We use a measure of forced expiratory

volume in one second (FEV1) as a percentage of FEVI predicted

using age, sex, and height regressions. The coefficients for

these prediction equations are from Knudson et al. (1976).

This measure is available for a random 60 percent of the sample

at enrollment and all of the samples at exit from the HIE.

These measures are fully documented in a series of Rand Reports

under the governing title Conceptualization and Measurement of

Physiologic Health for Adults, in the volumes for congestive heart

failure, chronic obstructive airway disease, hay fever, and angina

pectoris. For children aged less than four, see Measurement of

Physiologic Health for Children.
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I I I . INDIVIDUAL ANNUAL APPROACH: METHODS AND RESULTS

METHODS

Our first set of results is based on comparisons of the annual use

of outpatient medical services and time lost to illness with an

estimated annual exposure to air pollution for each individual. For

this analysis, we thus have one observation per person per year, with a

maximum of five years of data, i.e., five observations per person. As

noted in Sec. II estimates of each individual's exposure to air

pollutants have been made by mapping residence and work locations to the

nearest monitoring stations. These estimates are corrected for change

of job and residence.

We use two estimation techniques. First, for expenditures on

medical services, we use a two-part model. One part is a probit

regression model for the probability that a person will use outpatient

medical services during the course of the year. The other is a weighted

least-squares equation for the logarithm of expenditures for those

persons who did use outpatient medical services. (See App. B for

further details.) The only difference between the Dayton and the

Seattle analyses of expenditures is that we include the costs of drugs

and supplies in the Dayton numbers. Other analyses have shown that the

demand for these products derives largely from outpatient visits.

For time lost to illness, we use a negative-binomial regression

model for the number of days with any school or work loss or restricted

activity during the year; this model is similar to the one used in

Hausman. Wise, and Ostro, 1983 (see App. B). data are based on biweekly

reports of time lost due to illness. We use the negative binomial

rather than a Poisson model because the data exhibit overdispersion.

The estimation techniques used here operate on the same assumption

used in cross-sectional analyses. That assumption is that the

unobserved determinants of the use of ambulatory medical services and of

time lost to illness are uncorrelated with the explanatory variables

That is a reasonable assumption to make for the insurance variables,

because the insurance coverage was randomly assigned to each family.
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Thus, each insurance plan has the same mix of sickly and healthy

individuals. However, for this analysis, it is more important that the

assumption hold for the air pollution variables, and, unfortunately, it

is less likely that it does. Levels of air pollution were not randomly

assigned. Families with members who are susceptible to the adverse

effects of air pollution may choose to live in less polluted areas. To

the extent that the HIE measures of health status measure the true

health status with error, the measurement error in health status may be

correlated with air pollution exposure, and the estimates may be biased.

Put another way, the analytical techniques do not use the repeated

observations on each person to purge the estimates of any tendency for

more sickly individuals [net of the HIE health status measures) to live

in less polluted areas.'

RESULTS

Use of Medical Services

Table 3.1 presents the estimated coefficients for the two-part

model for annual ambulatory expense in Seattle and Dayton.' The data

come from claims filed at the time of service use. All pollutants

were entered into the model together, so the coefficient for each

pollutant represents the partial effect of that pollutant alone and

excludes the effects of any correlated pollutants.

None of the effects on ambulatory expenses are significant, except

for those of ozone and COH on expenditures per user in Seattle. T h e

ozone effect, however, is in the unexpected direction: Higher levels

are associated with lower expenditures on health. As a matter of fact,

all effects of increased ozone and TSP appear beneficial. The effects

of SO
2

vary. On the whole. the effects on expenditures appear to be

more significantly counterintuitive than those on probability of use.

Also, air pollution appears to be associated with beneficial results

'We do adjust for intrafamily correlation and intertemporal
correlations using a random-effects specification. However, this
assumes that the errors are uncorrelated with the explanatory variables.
If there is adverse selection into cleaner areas of each city, that
assumption does not hold for air pollution.

'CO is excluded from Seattle, COH from Dayton, and NO, from both

because of missing data and confounding with other variables.
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Table 3.1

EFFECTS OF AIR POLLUTION ON USE OF AMBULATORY MEDICAL SERVICES
(T-STATISTICS IN PARENTHESES)

Seattle Dayton

(Log) (Log)
Probability Expenditures Probability Expenditures

Pollutant of Any Use per User of Any Use per User

SO +.2008 -2.6246 +0.0908 -0.0503
(+1.35) (-0.51) (+0.82) (-0.67)

CO --- --- -0.0240 +0.008
(-0.115) (0.07)

TSP -0.0014 -0.0011 -0.209 -0.189
(-0.55) (-0.51) (-0.92) (-1.16)

Ozone -0.1213 -5.8020 -0.127 -1.161
(-1.63) (-2.71) (-0.75) (-1.29)

Coefficient
of haze +0.2036 +0.1828 --- ---

(+0.77) (+1.78)

.

more consistently in Dayton than in Seattle. But again, almost all of

these "effects" are not significantly different from zero. If we

combine the results from the two parts of the model, we find no

significant effect of air quality on the use of ambulatory medical

services in either city.

Because susceptibles may respond differently to air pollution than

the rest of the population, we examined them in a separate analysis. We

defined an individual as susceptible if he suffered from hay fever,

asthma, or shortness of breath. Use of outpatient services in Dayton

increased in response to greater levels of air pollution, not to an

extent that could be considered significant (x2(8) = 12.14), but to a

much higher degree than one would expect at random (p = .5). In large

part, this result is due to a greater likelihood of use of services by
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susceptibles as CO and TSP levels increase (t = 1.55 and 1.98,

respectively). In Seattle, we had a larger sample of susceptibles. The

analysis there showed mixed results, but there were significant

increases in total expenses with falling ozone (t = -2.44) and TSP (t =

-1.69).

Time Lost to Illness .

Table 3.2 gives elasticities of air pollution with respect to time

lost to illness for Seattle and Dayton." The number of days lost to

illness was not significantly related to annual air pollution for most

pollutants in both cities. The exceptions were TSP in Seattle and ozone

in Dayton, both of which are associated with decreasing time losses to

illness. In fact, almost all the insignificant effects were also in the

"wrong" direction.

Table 3.2

ELASTICITIES OF AIR POLLUTION WITH RESPECT
TO TIME LOST TO ILLNESS

Seattle Dayton

Pollutant Coefficient (t-Statistic) Coefficient (t-Statistic)

TSP -0.643 -2.16 -0.352 -0.81

S -0.024 -0.73 +0.034 +0.19

Ozone -0.034 -0.95 -0.598 -1.93

co2
-- -- -0.262 -0.63

COH -0.510 -1.50 -- --

'The elasticities indicate the proportional change in time lost for
a doubling of air pollution. For example, a 100 percent increase in
ozone in Seattle would result in a 3.4 percent decrease in time lost to
illness.
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DISCUSSION

We find that the use of ambulatory medical services and time lost

to illness generally do not increase from year to year or from place to

place as air pollution levels increase. In fact, we observe that ozone

is significantly, counter intuitively associated with expenditures for

medical services in Seattle and with time lost to illness in Dayton. It

is thus possible that, at levels encountered in those cities, increases

in ozone are associated with beneficial effects on health. For example,

years with high ozone may be warmer, sunnier years with less sickness.

The ozone variable may be picking up these omitted weather variables.

The inclusion of a dummy variable for year should reduce this bias.

There are several possible explanations for the general lack of

significant findings:

The absence of a true effect.

The sorting out of individuals across pollution zones.

The use of annual rather than daily data.

Omitted weather variation from year to year.

The second and third of these might be ruled out by changing the

analytical approach.

Geographical Sorting

Although we have used data from a randomized trial, this study of

air pollution is observational, because we have not randomized

individuals to differing levels of air pollution. If people with

respiratory problems are more likely than healthy people to live in

areas with better air quality, then the estimates of the adverse effects

of air pollution could be biased downward to the point that the

coefficients have the wrong sign.

To investigate further the potential for geographical sorting. we

reestimated the effect of air pollution with a fixed-effects model for

use of ambulatory medical services and for time lost to illness; there

is a fixed effect for each individual. In each case, we regressed the

annual ambulatory expenses, stated as a deviation from each person's
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mean, on the levels of the four pollutants, each stated as a deviation

from each person's mean. By taking each person's independent and

dependent variables as deviations from his own mean, we allow each

person to act as his own control; see Maddala (1971). In effect, we

changed the individual annual analysis from a cross-sectional to a panel

study. The results for expenditures in both cities and for time lost to

illness in Seattle were estimated by ordinary least squares.4 We did

not attempt to estimate the parameters of a fixed-effect version of the

two-part model.

Applying the fixed-effects model in Seattle reduced the beneficial

effect of ozone on total ambulatory expenditures to insignificance (t =

-0.75) and changed the beneficial effects of the other pollutants to

adverse effects, though still insignificant ones; the overall test

statistic was F(4, 6041) = 0.47. Applying the fixed-effects model to

expenditures in Dayton yielded insignificant and perverse effects for

TSP and SO2 (overall F(4, 3920) = 4.96).

Using Annual Data

The lack of significant results may be attributable to the

inappropriate aggregation of an individual's responses over time. Colds

and other sicknesses may occur in the winter, while air pollution is

highest in the summer or spring. Using air pollution values based on

regional variation in spring air quality to explain behavior driven by

winter-versus-spring differences is inappropriate. For instance, in

Dayton, the period of highest ozone levels occurred in July 1976, but

most of the use of health services in that year, especially for

respiratory problems, occurred during the late fall through early

spring. Thus, the highest ozone reading could not have caused the

greater part of the use of services for that year. In addition, the use

of annual averages for air pollution and annual expenditures largely

ignores the importance of short-term fluctuations in air quality and

illness. Annual values are less variable than monthly or daily values.

The less variable the independent measure, the less precision for its

coefficient.

'We did not correct the standard errors for the negative
correlations among observations induced by taking observations as
deviations from individual means.



- 39 -

We have used two other approaches to estimate the adverse effects

of air pollution on use of medical services and time lost to illness

Both take fuller advantage of the information in the time series of

daily (rather than annual) values and the second controls for

geographical sorting. The next two sections describe these approaches,

their limitations and their results.
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IV. AGGREGATED DAY-TO-DAY APPROACH

To take full advantage of the available day-by-day information on

variations in health outcomes and air pollution we have used two

related methods. The first of these aggregates the responses across

individuals so that we have one observation for each day. This method

is not affected by individuals' sorting themselves out geographically on

the basis of their susceptibility to pollution. We do not compare the

responses of geographically separate individuals with each other,

because we look at a fixed population. The second method examines each

individual' s daily time series separately, using the Whittemore-Korn

technique; the latter approach is described in the next section.

DATA AND METHODS

The sample for the analysis of time lost to illness consists of all

individuals who were assigned to file health diaries with HIE. Although

the diaries ran into the third year in Seattle and the fourth year in

Dayton, we eliminated the partial data from those years to ensure against

seasonal imbalance in the analysis. Also, the health diary data for the

first year in Dayton were not available from the H1E. Thus, we used the

data from HIE years 2 and 3 in Dayton and 1 and 2 in Seattle. These two

pairs of years happened to match each other very closely on the calendar.

To allow comparability with the time-lost results, the sample for

analyzing the use of medical services consists of all HIE participants

present in Seattle for years 1 and 2 and in Dayton for years 3 and 3.

For each day, we tallied the number of individuals in this'

subsample and the number reporting any physician visits, days in a

hospital, sick loss, work loss or restricted activity. We used a

maximum-likelihood logistic regression model to estimate the association

of each day's air quality level with the proportion of the population

reporting each health outcome (any visit. any hospitalization, any sick

loss, or any work loss)'.

Because of the staggered enrollment dates in the experiment, the
population at risk varied by month. The results are weighted to reflect
the differences in sample size.
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The analyses we report here are those with lag times between

pollutant level and health effect that were found to capture most of the

effect without losing information because of gaps in the pollution time

series. For pollutants other than ozone, each day's health outcomes are

estimated as a function of the logarithms of that day's and the

preceding two days' average pollutant concentrations. Estimation of

ozone is the same except that daily maximums are used instead of daily

averages.

The independent variables include air quality variables, along with

indicator variables for day of the week and month of the year. We

included the daily and monthly variables to avoid confounding true air

pollution effects with true daily and seasonal effects. Air quality

varies markedly by day of the week and season of the year often in the

same direction as daily and seasonal health effects. For example, air

pollution levels are lower on weekends, and so are use of services and

time lost to illness. Part of the lower use of services is due to

reduced availability of physician services (except for emergency

departments) on weekends. Part of the lower time lost to illness is due

to the fact that schools are closed and few people work weekends. As a

result of including monthly and daily dummies, our estimation procedure

controls for variation between days of the week and months of the year

in estimating the effects of air quality.

Our data include measures of air pollution levels taken at a single

point in each city.2 In both cities, we analyze for SO, and ozone. TSF

was included in the Dayton analysis but not in Seattle. where TSP was

measured every sixth day; including TSP in Seattle would have reduced

substantially the number of observations. In Seattle, COH was used as a

prosy for TSP. and CO were also included only in the Dayton

analysis. Because of gaps in the daily data for individual pollutants

and lack of overlap among the pollutant time series, we focus on each

2 Because we have only one data point for each day. we could use
only one value of air pollution level for each pollutant. We used
values from a centrally located. usually downtown monitor. See the
"Exposure" discussion in Sec. II
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pollutant taken one at a time. Using the intersection of the six time

series would have dramatically reduced our precision. Hence, the effect

reported here is the marginal rather than the partial effect, because we

have not controlled for other pollutants.

RESULTS

Use of Ambulatory Services

As shown in Table 4.1, only ozone has significant effects on use of

ambulatory health services in Seattle (when the other two pollutants are

included in the model). The signs for SO2 and Ozone are as expected--

increases in air pollution are associated with higher probability of

visiting a physician. However, the magnitudes of these adverse effects

of air pollution are small. For SO
. 2’

a 100-percent degradation in air

quality is associated with a 0.5-percent increase in the proportion of

the population visiting a doctor. For ozone, there would be a

4.3-percent increase. A 100-percent increase in COH is associated with

a 0.9-percent decrease in visits.

In Dayton, the aggregated day-to-day analysis shows a significant

association at the 10 percent level or better between the likelihood of

visiting a medical provider and the level of NO2 and SO
2'

and at better

Table 4.1

RESPONSE TO AIR QUALITY: EFFECTS OF A 100-PERCENT INCREASE IN
AIR POLLUTION ON DAILY PROBABILITY OF A VISIT IN SEATTLE

x2(3) for
% Before %, After Percentage Air Pollution

Pollutant 100% Change 100% Change Change [a] Parameters

COH 1.486 1.473 -0.9 38.11[b]
so 1.475 1.482 +0.5 4.00
Ozone 1.481 1.544 +4.3 7.74[c]

NOTE : Percentage in first column differs by pollutant
because of different gaps in time series.

[a] 100% x [(col 2 - col 1)/col 1].
[b] Results significant at 1 percent level.
[c] Results significant at 10 percent level.



- 43 -

than the 1-percent level for ozone, and TSP (see Table 4.2). However,

in contrast to Seattle, the signs are not as expected for these

pollutants: Increases in these pollutants are associated with a lower

rather than a higher probability of a visit. Only CO exhibits an

adverse effect of increased air pollution. As in Seattle, the

magnitudes of all effects of air pollution are quite small, with a

100-percent degradation in air quality leading to less than a four-

percent change in the number of individuals seeking medical care.

Hospital Days

The effects of air pollutant concentrations on the likelihood of

being in the hospital was generally insignificant in both cities. This

lack of significance is largely attributable to the rareness of

hospitalization. The one exception to this pattern was TSP in Dayton

(X2(3) = 21.28). In this case, a 100-percent degradation in air quality

was associated with a 33-percent increase in use of services. The

Table 4.2

RESPONSE TO AIR QUALITY: EFFECTS OF A 100-percent INCREASE
ON AIR POLLUTION ON DAILY PROBABILITY OF A VISIT IN DAYTON

Proportion Visiting Physician

X2(31 for
% Before % After % Air Pollution

Pollutant 100% Change 100% Change Change [a] Parameters

N02 1.251 1.223 -2.2 7.57[b]

so2 1.203 1.179 -2.0 7.20[b]

CO 1.255 1.289 +2.7 28.19[c]
TSP 1.236 1.189 -3.6 23.06[c]
Ozone 1.239 1.194 -3.8 12.96[c]

NOTE: Percentage in first column differs by pollutant because
of different gaps in time series.

[a] 100% x [(co1 2 - co1 l)/col 11.
[b] Results significant at 10 percent level.
[c] Results significant at 1 percent level.
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magnitude of this effect is implausibly large. In Dayton, most of the

other pollutants--SO*, CO, and ozone--did have effects in the expected

direction, i.e., more pollution was associated with higher use. In

Seattle, however, SO2 and ozone exhibited beneficial but statistically

insignificant effects.

Time Lost Due to Illness

Tables 4.3 and 4.4 show the effects on time lost to illness

associated with each of the pollutants in Seattle and Dayton. In

Seattle, lower levels of SO2 and ozone were significantly associated

with higher levels of time lost to illness, but the magnitude of the

estimated effect was small. COH was not associated with significant

changes in time lost due to illness. A doubling of the level of ozone

would be associated with a fall in this proportion by about 10 percent.

This association of air quality and time lost to illness is largely the

result of sick-loss time, because the results for work loss are even

less significant than one would expect from random variation.

A larger effect was found in Dayton, where a 100-percent increase

in ozone concentration was associated with a 13-percent increase in time

lost to illness (x2(3) = 26.15). The effects of NO2 and SO2 in Dayton

Table 4.3

EFFECTS OF A 100-PERCENT INCREASE IN AIR POLLUTION ON
DAILY PROBABILITY OF ANY TIME LOST TO ILLNESS IN SEATTLE

x2(3) for
% Before % After Percentage Air Pollution

Pollutant 100% Change 100% Change Change [a] Parameters

COH 2.826 2.782 -1.6 2.25
so2 2.668 2.589 -3.0 15.09[b]
Ozone 2.679 2.412 -10.0 12.97[c]

[a] Includes sick and work loss.
[b] 100% x [(col 2 - col 1)/col 1].
[c] Significant at 1 percent level.
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Table 4.4

EFFECTS OF 100-PERCENT INCREASE IN AIR POLLUTION ON
DAILY PROBABILITY OF ANY TIME LOST TO ILLNESS IN DAYTON

Percentage Ill [a]

% Before % After
Pollutant 100% Change 100% Change

x2(3)
for Air

% Pollution
Change[b] Parameters

3.042 2.902
SO2
NO2

2.294 2.805
CO 3.095 3.031
TSP 3.070 3.033
Ozone 3.038 3.423

-4.6 12.80[c]
-4.1 15.98[c]

-2.1 1.56
-1.2 1.21

+12.7 26.15[c]

[a] Includes sick and work loss.
[b] 100% x [(co1 2 - co1 l)/col 11.
[c] Significant at 1 percent level.

were also significant but of the wrong sign. Both CO and TSP had

insignificant effects.

DISCUSSION

The aggregated day-to-day approach displays a mixed set of

associations between air quality and our health outcomes. In Seattle,

increases in ozone concentration were associated with a higher

probability of using ambulatory medical services but lower probability

of being sick. SO2 was negatively associated with seeing a physician,

but positively associated with time lost to illness. In Dayton, higher

CO has a significant adverse effect on the likelihood of visiting a

medical provider, while higher TSP has an adverse effect on being

hospitalized. Higher levels of ozone were associated with higher levels

of time lost due to illness.
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However, the results are only partially in agreement with our

expectations. We also found that higher levels of TSP, and

ozone were significantly associated with lower likelihood of visiting a

provider. Higher levels of and SO
2
were associated with lower

levels of time lost to illness.

A priori, we expected that time lost to illness would be more

responsive to air quality than use of services, for four reasons:

(1) One can suffer ill effects and report them as restricted-

activity days without incurring the opportunity costs of not

attending school or going to work, and without paying the price

of a visit to see a physician.

(2) It may take some time to see a physician because of delays to

appointment for nonemergency care. During that period, the

adverse effects of air pollution may disappear.

(3) Individuals suffering from cardiopulmonary problems may be able

to treat themselves for minor adverse effects when sick,

relying on a physician for treatment of only the more serious

episodes.

(4) Both cities have only moderate levels of air pollution. As a

result, we might expect few episodes of illness that are severe

enough to be presented to a physician.

Here, we have disaggregated the data to a behaviorally more

meaningful time frame. Why do we still obtain this mixed set of

results? Again, either there is no effect large enough to be detected

with these data, given the pollution levels in Seattle and Dayton, or

the results are biased by our methods. For example, the omission of

meteorological variables could have led to an omitted variables bias;

during Phase II of this project, we will add such variables to the list

of explanatory variables.

Also with this method, we aggregated across individuals to avoid

the potential bias that would occur if sicker individuals moved to

cleaner areas; in principle, the population acts as its own control. To

do that required using a single source of air quality data, which came
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from a downtown monitor. Thus, the air quality data measure pollution

with error for much of the sample, especially those living in cleaner

areas. This measurement error could bias the estimated coefficients

toward zero.

In the next section, we use a technique developed by Whittemore and

Korn to avoid the statistical problems in both the individual annual and

in the aggregated day-to-day approaches.
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V. INDIVIDUAL DAY-TO-DAY APPROACH: METHODS AND RESULTS

In this section we discuss the individual day-to-day analysis based

on the approach proposed in Whittemore and Korn (1980). This approach

is carried out in two stages. First, we estimate each individual's

daily health outcome as a function of his or her daily aerometric

exposures so as to assess the individual-specific response. Each

individual serves as his or her own control in this analysis. Then, we

pool the individual-specific responses and carry out a secondary

analysis, the meta-analysis, in which we assess the overall response to

aerometric attributes in the population. This second stage allows us to

answer three key questions: First, do the people in the population on

the average fall ill more often on polluted days than on clean days?

Second, do individuals in the population respond the same or differently

to air pollution? Third, if they respond differently, are their

responses related to their known characteristics? (For example, are

children more sensitive to air pollution than adults?)

We begin by describing the Whittemore-Korn model and its

application to the HIE data. We then show how we derived the sample we

analyzed. Finally, we present the results of the second-stage analysis

for the full sample and for sickly and healthy subsamples. Appendix C

presents further results of the first-stage analysis, along with

comparisons of other subsamples.

THE WHITTEMORE-KORN MODEL

Synopsis

In the Whittemore-Korn model, the unit of analysis is usually taken

as a person-day. (It is possible to consider other time units such as

hours or weeks, but the twenty-four-hour period is usually the most

convenient to work with. The HIE data are collected in daily units.)

For each individual in the target population, say, the ith person, and

for each day in the study period, say, the tth day, the model specifies

a logistic regression model for the daily probability of the person's

being sick:
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logitCpit) = Bi, + Ej x.. ;k B.. ,
1Jt =J

(1)

where p is the ith person's probability to be sick on the t
th

it day;

X is the level of the j th
ijt explanatory variable (e.g., aerometric

value) for the i
th

individual on the t
th

day; 8..
J-J

is the ith person's

response to the j
th

explanatory variable; the intercept for the ith

person, 8,,, is the logit of the probability of the ith person's being

sick on a day when the levels of all explanatory variables are zero.

We use a random-effects (variance components) model to specify a

distribution of individual responses, B...
13

The model specifies a meta-

distribution for the individual responses as follows:

B ij - N(T., T.~),
J J

(2)

where X. is the average response to the j th
3

explanatory variable. If

all individuals have the same response to the j th
explanatory variable,

all 8..
=J

are identical and equal X.. If individuals differ in their
J

responses to the j th explanatory variable, the B..'s are different from
iJ

3 .; the differences
J

B
ij

- Xj are the between-individual differences.

The average magnitude of the between-individual differences (in the

sense of L2 distance) is given by r..
J

(If the individuals have

identical responses, the corresponding parameter 'c is zero.) The model

(2) given above is usually known as the random-effects or (variance

components) model. We will test separately the hypotheses that X. = 0
J

and r
j
= 0; the two hypotheses together are equivalent to the global

null hypothesis that 8.. = 0.
iJ

When there are between-individual differences, it might be

desirable to relate them to observed characteristics of the individuals.

For example, one might be interested to know whether the individual's

response to air pollution is related to smoking, i.e., whether a smoker

might be more sensitive to air pollution than a nonsmoker. We are

currently only capable of carrying out this analysis for dichotomous

characteristics. For example, we can compare smokers with nonsmokers,

but we cannot relate the individual responses to a continuous specifi-

cation for smoking, such as the number of cigarettes smoked per day.
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For a dichotomous characteristic, we can partition the population

into two subpopulations, one corresponding to each level of the

characteristic. We then apply a random effects model similar to model

(2) to each subpopulation, and compare the parameters 'II and T for the

two subpopulations. If the characteristic being studied is related to

the individual responses, the average response 21 for the two

subpopulations should differ. For example, if only smokers were

sensitive to air pollution, the average response '21 for smokers would be

nonzero, while the average response 7( for the nonsmokers would be zero.

If the relationship between the individual responses and the

characteristic being studied explains all of the between-individual

differences, the parameters 'c would be zero for both subpopulations.

The main advantage of the Whittemore-Korn model is that each

individual serves as his or her own control, which avoids the

confounding problems with the cross-sectional methods used in Sec. V.

Furthermore, since the model provides estimates of each individual's

responses, it allows great flexibility in the meta-analysis on

differential susceptibility. We can contrast any two subpopulations

defined in terms of any observed dichotomous characteristic for the

individuals. Thus, this model improves on the average-response

specification in the aggregated daily approach.

The Whittemore-Korn model also allows us to calculate each person's

response to a local estimate of the pollution he or she is exposed to.

Again, this is an improvement over the aggregated day-to-day approach,

which uses one daily pollution value for everyone, introducing

measurement error into the analysis.

One limitation of the model is that it applies only to short-term

effects. Another limitation is that, empirically, the model cannot be

applied to people who are healthy almost all the time or to people who

are sick almost all the time. The logistic regression model usually is

not estimable (identifiable) for those people. For example, consider a

person who is healthy all the time. The empirical probability is zero

that the person will be sick on either a polluted day or a clean day.

The logit of the empirical probability zero is minus infinity. The

effect of air pollution for this person is therefore (minus infinity) -

(minus infinity), which is indeterminate. .
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Toward the end of this section, we will discuss how we restrict our

analysis to those people with more than a few sick days and more than a

few healthy days over a period of up to two years, and discuss the

implications of this restriction.

Application

For the health outcome in this analysis, we use a combination of

restricted activities, school loss, and work loss as given in the

biweekly health diary. For each person in the sample on each day in the

study period, if the person reported either a day with restricted

activities due to health reasons, school loss, or work loss, the day is

treated as a sick day; otherwise the day is treated as a healthy day.

Because of limitations in the data, we need to make some revisions

in the Whittemore-Korn model in order to apply it appropriately. One of

the important findings in Whittemore-Korn (1980) is the autocorrelation

between daily disease statuses. For the same person, the day after a

sick day is more likely to be a sick day than a day after a healthy day,

everything else being the same. For most people in our sample, there

are too few days-after-a-sick-day to allow reasonable estimation of this

effect; for example, for a person with ten sick days we have only ten

opportunities to estimate the probability of being sick the day after a

sick day. Therefore, for most of our analysis we delete all days after

a sick day and focus on the estimation for days after a healthy day. In

other words, we only estimate the probability for the transition from

the healthy status into a sick episode; a sick episode is dated to the

first day of a series of consecutive sick days. We do, however, take up

separately the questions of the length of sick episodes and how the

length of the episodes responds to air quality.

SAMPLE AND DATA

Sample and Health Outcome

The maximum number of people that could be used in this analysis is

2901--the number of HIE participants were assigned to file health

reports while in the Seattle metropolitan area.' On the average we have

The individual day-to-day approach has not yet been applied to the
Dayton sample. That will be done during the second phase of the research.
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630 daily reports per person. The maximum number of days possible for

each person is 731. However, some of the participants moved out of the

Seattle area before the end of the health report study period and some

failed to file all required health reports.

The HIE participants averaged 4.34 sick episodes per person. The

distribution of sick episodes was fairly skewed. More than ten percent

of the HIE participants had no sick episodes. The median value was 3

episodes. The maximum value was 77.

As discussed earlier, the logistic regression model is usually not

estimable when the number of sick episodes is too low, so we need to

restrict the analysis to people with more than a few sick episodes. We

have chosen to include only those people with more than the median

number of episodes (3). This leaves us with 1249 persons. However,

those people report 10,582 sick episodes, which is more than 80 percent

of the total number of sick episodes. Therefore, in terms of the number

of sick episodes, the loss due to this restriction is minor.

The restriction to people with more than a few sick episodes can be

viewed as an optimal strategy to make the best use of analytic

resources. The people with a few episodes contribute less information

than the people with one episode. (As discussed above, the response of

a person who is healthy throughout the study period is undefined, and

thus contributes no information at all.) In the next subsection, we

examine empirically the implications of this strategy.

The restricted sample of 1249 persons with more than three episodes

yields an average of 684 daily health reports per person. That average

exceeds that for the whole sample because people with fewer health

reports are more likely to have three or fewer episodes and therefore be

deleted according to the restriction rule.

Not all person-days with health reports can be used in the

analysis. As discussed above, we use a sick episode instead of a sick

day as the health outcome, so we have to delete all days immediately

following a sick day. Furthermore, some days cannot be used in the

analysis because of missing air pollution data. With those deletions,

we have an average of 425 days per person.
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There are a few people with very few days available for analysis.

We choose to restrict to people with at least 100 days available for

analysis. This restriction deletes 11 people and leaves us with 1238

persons in the final analysis sample. They average 429 days per person

and 8.5 sick episodes each.

EXPLANATORY VARIABLES

For this analysis, we use three groups of explanatory variables:

air pollution measures, meteorological measures, and calendar effects.

The air pollution data are from SAROAD and the Washington State

Department of Ecology. The following daily air pollution measures are

used: daily average of sulphur dioxide (S02), daily average of

coefficient of haze (COH), daily average of TSP, daily maximum hourly

average of ozone, and daily maximum hourly average of nitrogen dioxide

(N02). Air pollution at a person's residence or work location is

assumed to be the same as that at the nearest monitoring site (see the

discussion of exposure in Sec. II).

Values of the various air pollution measures are distributed over

days in a somewhat skewed fashion. The statistical measure of skewness

ranges between one and two. Had the skewness been larger, the results

of the analysis might have been dominated by a few outliers and would

thus have been unstable. In such situations, it is necessary to

transform the skewed variable to get more stable results. Given the

moderate amount of skewness, we choose not to apply transformations.

We also use daily minimum temperature and daily precipitation data

from the National Weather Service. Because meteorological measures are

available from only one weather station, those values are assumed to

apply to all residences and work locations.

The distribution of precipitation is very skewed, because more than

half of the days have no precipitation. If the effect of precipitation

were of primary interest in this study, one might specify the effects of

precipitation as two entries in the logistic regression--one an

indicator variable for a day with precipitation, the other the amount of

precipitation (or a transformed amount). However, since the effect of

precipitation is not of primary interest in this study, we use a simple

linear specification.
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In addition to the aerometric data, we use two calendar-related

covariates to control for possible confounding effects. The first is an

indicator variable for weekday versus weekend; this is a possible

confounding factor because the levels of air pollution are usually

higher on weekdays than on weekends, and people are more likely to

report sickness during weekdays than during weekends. The second is an

indicator variable for the first week of each two-week health report

period. Because we use a self-administered diary that might not have

been filled out daily, the accuracy of reporting in the earlier part,

say, the first week, might be different from that in the latter part,

say, the second week.

The aerometric attributes are closely interrelated, e.g., ozone is

generated from a photochemical process and usually has low or null

levels on rainy days. Therefore, we expected substantial correlation

among our explanatory variables. Explanatory variables that are highly

correlated might be nearly collinear, i.e., one of the explanatory

variables might be nearly a linear combination of some of the others.

In such cases, the logistic regression model might not be estimable or

might be ill-conditioned, and the estimated results would be unstable.

Most of the pollution measures are indeed significantly correlated, but

the magnitudes of the simple and multiple correlations are all moderate;

the largest ones are under 0.6 (see Tables C.1, C.2, and C.3). Thus,

collinearity among the explanatory variables is not a major concern.

GENERAL RESULTS

On applying the random-effects model to estimate the average

responses and standard deviations of individual differences, we obtain

the results given in Table 5.1. For four of the pollution measures

G02’ COH, TSP, and N02), the average effect of pollution is positive,

indicating that there is a higher probability of having a sick episode

on a polluted day than on a clean day. Fur two of the four (S02, N02),

the effect is statistically significant at the one percent level. The

average effect for ozone is negative and statistically significant, as

is the effect for minimum temperature, which is negative and
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Table 5.1

META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER

THE FINAL ANALYSIS SAMPLE (N=1238):
AVERAGE RESPONSES

Aerometric Estimated z
Attribute Coefficient Statistic

SO2 (ppm) 7.94 6.12

COH 0.0150 0.38
TSP (Wm' > 0.00061 1.50
Ozone (ppm) -3.46 -4.46
NO2 (ppm) 1.33 3.18

Minimum temperature (F) -0.0132 -8.12
Precipitation (in.) 0.684 12.8

statistically significant. The average effect for precipitation is

positive and statistically significant.

Table 5.2 summarizes the results for the average effects based on

the random-effects model and on another approach to correcting the

analysis for the instability of outliers--analyzing individual z

statistics (see App. C). While the two sets of results are not

Table 5.2

SIGNIFICANCE OF THE AVERAGE RESPONSES

Aerometric
Attribute

Random-Effects Individual
Model z Statistics

so2
+ *

COH + - *
TSP + - *
Ozone - * - *

N02
+ *

Minimum temperature - * - *
Precipitation + * +

NOTE: +: average response is positive;
-: average response is negative;
*: effect is statistically significant

at the 5-percent level.
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identical, they do not contradict each other: There are no instances in

which one approach gives a statistically significant positive result and

the other method gives a statistically significant negative result.

The two approaches both indicate that ozone has a significant

association with lower probabilities of sick episodes. The two

approaches also agree that higher minimum temperature is significantly

associated with lower probabilities of sick episodes, and that

precipitation might be associated with a higher probability of sick

episodes.

The random-effects model indicates that SO2 has a significant

association with higher probabilities of sick episodes, which is not

corroborated in the individual z statistic approach. If we accept the

association estimated from the random-effects model as real, the

magnitude of the association can be interpreted as follows. The meta-

analysis estimates that an increase of one ppm SO2 is associated with an

increase of 7.94 logit units in the probability of a sick episode. If

the average SO2 level in downtown Seattle triples from its present 0.01

ppm to 0.03 ppm, the primary federal standard level for the annual

average, the probability that the average person would experience a sick

episode would increase by 0.16 logit units. For most people the

probability of having a sick episode is small on any day, so the logit

scale is very well approximated by the logarithm scale. An increase of

0.16 in the logarithm of the probability of having a sick episode is

equivalent to multiplying the probability of a sick episode by 1.17.

For the final analysis sample on the average, this is equivalent to a

increase from 0.020 sick episodes per person-day to 0.023.

Equivalently, a 10-percent increase in SO
2
would cause sick

episodes per person-day to go from 0.02 to 0.0202. The effects for

other pollutants are smaller. For COH, sick episodes would increase to

0.02002. For TSP, the same increase would raise sick episodes to

0.0201. For ozone, sick episodes would fall to 0.0188. For N02, sick

episodes would increase to 0.0201.

As discussed above, an advantage of the random-effects model is

that it allows estimation of the standard deviation for between-

individual differences. These are given as the tau parameters in Table

5.3. For three of the aerometric attributes, COH, N02, and minimum
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Table 5.3

META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER

THE FINAL ANALYSIS SAMPLE (N=1238):
BETWEEN-INDIVIDUAL DIFFERENCES

Aerometric
Attribute Tau

z
Statistic

SO2 (ppm) 0.0 0.00

COH 0.348 1.98
TSP (v&n3 > 0.00156 0.41
Ozone (ppm) 5.54 1.38
NO2 (ppm) 5.53 4.24

Minimum temperature (F) 0.0193 3.28
Precipitation (in.) 0.0 0.00

temperature, there is a statistically significant between-individual

difference, i.e., the individuals in our sample do not respond similarly

to these aerometric attributes. For two of the three, the tau parameter

is much larger than the average responses given in Table 5.1.

Therefore, a significant fraction of the people might have a response in

the opposite direction from the one given by the average response. For

example, the tau parameter for NO
2

is 5.53, while the average response

is 1.33 (both given in terms of logit per ppm N02.) If we take those

estimates as true values, we calculate that the probability of a

negative response (opposite the direction given by the average response)

for any given individual is 0.405. Thus, about 40 percent of the people

have a negative association between NO2 and sick episode, while about 60

percent have a positive association.

We also found a strong negative association between the

coefficients and their standard errors (see Figs. C.8-C.14 in App. C).

There are two possible explanations for this unexpected phenomenon.

First, there may be a negative association between the true individual

coefficients and their true standard deviations. We find this

possibility unlikely because of the consistency of the negative

associations across the different pollutant and aerometric variables.

Second, the observed negative associations may be a statistical
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artifact. We conjecture that the small sample bias of the maximum

likelihood estimates of the logistic regression coefficients may be the

cause. In particular, individuals with smaller numbers of sick episodes

may tend to have larger (negative) biases. Since these same individuals

will tend to have larger standard errors of their coefficients, this

could lead to the observed negative associations in Figs. C.8-C.14.

Fortunately, we are in the position to be able to test this

conjecture by performing some computer simulations in the second phase

of this project. By using the observed independent variables and

simulating random sick episodes based on the logistic regression model,

we will see if there is a negative association between the simulated

estimated coefficients and their standard error. Since in this

simulation we will know that there is no association between the true

individual coefficients and their standard deviations, we will determine

if the small sample bias of the estimated coefficients is the cause of

the negative association.

The verification of this type of small sample bias would have

important implications for the present analyses and for other studies

using the Whittemore-Korn model. First, it would suggest that the down-

weighting of the coefficients with the larger standard errors is

appropriate since they are likely to be more biased. If this were the

case, then the random-effects analysis would be more appropriate than

the z analysis. Secondly, it would suggest improvements in the methods

of analysis using the Whittemore-Korn model to reduce the small sample

bias.

COMPARISON OF SICKLY AND LESS SICKLY SUBPOPULATIONS

In this subsection, we contrast the responses to air pollution on

the part of sickly people with those of less sickly people. The first

criterion we use for sickliness is the number of sick episodes, rather

than the presence or severity of disease.

We compare the responses for those with 7 or more sick episodes

(the sick subpopulation, containing 655 individuals, 53 percent of the

final analysis sample) with those with 4 to 6 sick episodes (the less

sickly subpopulation, containing 583 individuals, 47 percent of the

final analysis sample.)
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The average responses for the two subpopulations are given in

Tables 5.4 and 5.5. The column "z for the contrast" in Table 5.5 gives

the z statistics for the difference between the average responses in the

two subpopulations.

Table 5.4

META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER

THE SICK SUBPOPULATION (N=655):
AVERAGE RESPONSES

Aerometric Estimated z for the
Attribute Coefficient Attribute Efficiency

SO2 (ppm) 5.12 3.33 0.711

COH 0.00811 0.18 0.722
TSP (w/m3 > 0.00060 1.24 0.708
Ozone (ppm) -3.60 -3.91 0.711
NO2 (ppm) 1.11 2.23 0.704

Minimum temperature (F) -0.0125 -6.43 0.697
Precipitation (in.) . 0.576 9.37 0.751

Table 5.5

META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER
THE LESS SICKLY SUBPOPULATION (N=583):

AVERAGE RESPONSES

Aerometric Estimated z for the z for the
Attribute Coefficient Attribute Contrast

SO2 (ppm) 14.9 6.07 3.39

COH 0.0435 0.58 0.40
TSP (ug/m" > 0.00043 0.54 -0.18
Ozone (ppm) -3.45 -2.34 0.09
NO2 (ppm) 2.20  2.89 1.21

Minimum temperature (F) -0.0151 -5.08 -0.73
Precipitation (in.) 1.01 9.46 3.54
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The only two aerometric attributes with significantly different

responses are SO
2

and precipitation. The less sickly subpopulation is

more responsive to SO2 --almost three times more; it is also more

responsive to precipitation--almost twice more. This result is

surprising because in the random-effects model for the final analysis

sample as a whole (Table 5.3), we found no between-individual

differences for SO2 or precipitation. As discussed above, we expected

to detect differential susceptibility only for those aerometric

attributes with significant between-individual differences. For the

final analysis sample, we found significant between-individual

differences only for NO2 and COH. We therefore expected that those

would be the two potential candidates for subpopulation comparisons.

For the other attributes, the random-effects model for the final

analysis sample indicated that all individuals had the same response, so

we did not expect to see any difference between subpopulations. It is

especially surprising that the subpopulation difference is statistically

significant only in SO2 and precipitation, the only two aerometric

attributes with zero estimates for tau in the final analysis sample.

These two attributes would have been the least likely to have any

between-individual differences. We do not have a good explanation for

this result.

The discrepancy in the response of the less sickly and sickly to

SO2 and precipitation implies that there are some important limitations

for the generalizability of the results obtained through the

Whittemore-Korn method. As discussed above, we have chosen to include

in the final analysis sample only those individuals with more than three

sick episodes. We therefore have to question whether our results are

generalizable to the "very healthy" people with three or fewer sick

episodes. Where the comparisons between sickly and healthy people

result in null findings, we might infer that the "very healthy" people

might have the same response. However, the positive SO2 finding

indicates that people's responses to SO2 are associated with their

health. Thus, the response of the '(very healthy" people to SO2 cannot

be inferred from our analysis.
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If we regard the average responses given in Table 5.4 for the

sickly subpopulation and those given in Table 5.1 for the final analysis

sample as two unbiased sets of estimates of the same unknown true

parameters, then it is of interest to know how much more information we

gain from the inclusion of the less sickly subpopulation. In other

words, because the estimates in Table 5.1 are based on 1.89 times as

many people as the estimates in Table 5.4, do we gain almost twice the

information? We would expect not, because the precision of the-

coefficients of the less sickly people should be less than that of the

coefficients of the people with more sick episodes. The results are

given as the "efficiency" column in Table 5.4. The efficiency is based

on the precision of the estimated average responses. For each

aerometric attribute, the efficiency is ratio of the variance of the

average coefficient in Table 5.1 to the average coefficient in Table

5.4. For all aerometric attributes, the efficiency of the sickly

subpopulation is about 70 percent. In other words, the near doubling of

the number of individuals from the 655 sickly persons to the 1,238 in

the final analysis sample, owing to the inclusion of the 583 less sickly

persons, only increases the effective sample size by about 43 percent

(i.e., 70 must be multiplied by 1.43 to get to 100). In other words,

the amount of information for each healthy person is less than half that

for each sickly person.

It appears reasonable to conclude that the more sick episodes a

person has, the more information we can expect the person to contribute.

This confirms our earlier conjecture that restricting the analysis to

people with more than a few sick episodes is an optimal strategy to make

the best use of analytic resources.

Tables 5.6 and 5.7 give the between-individual differences within

each of the two subpopulations. In terms of estimating the tau

parameter, the standard deviation of between-individual differences, the

sickly subpopulation has efficiencies of about 80 percent. Thus, for

estimating tau, the near doubling of sample size with the inclusion of

the less sickly subpopulation increases the effective sample size by only

about 25 percent. In other words, each sickly individual contributes
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Table 5.6

META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER

THE SICK SUBPOPULATION (N=655):
BETWEEN-INDIVIDUAL DIFFERENCES

Aerometric z for the
Attribute Tau Attribute Efficiency

SO2 (ppm) 3.37 0.17 0.801

COH 0.381 2.16 0.827
TSP (v&m3 > 0.00279 1.14 0.756
Ozone (ppm) 6.48 1.68 0.788
NO2 (ppm) 5.87 4.27 0.798

Minimum temperature (F) 0.0214 3.57 0.793
Precipitation (in.) 0.00 0.00 0.867

Table 5.7

META-ANALYSIS BASED ON THE RANDOM-EFFECTS MODEL
SUMMARIES FOR THE AEROMETRIC EFFECTS OVER
THE LESS SICKLY SUBPOPULATION (N=583):
BETWEEN-INDIVIDUAL DIFFERENCES

Aerometric z for the z for the
Attribute Tau Attribute Contrast

SO2 (ppm) 0.00 0.00 -0.07

COH 0.00 0.00 -0.82
TSP (w/m3 > 0.00 0.00 -0.42
Ozone (ppm) 0.00 0.00 -0.68
NO2 (ppm) 1.76 0.186 -1.68

Minimum temperature (F) 0.00 0.00 -1.47
Precipitation (in.) 0.00 0.00 0.00

about four times the information that a less sickly individual

contributes to the estimation of tau.

For the less sickly subpopulation, all the aerometric attributes

except NO2 have no between-individual variation; even the tau parameter

for NO2 is statistically insignificant. Thus, although there appear

to be some nontrivial differences in the tau parameters within each

subpopulation, none of the differences is statistically significant

(from the column ("z for the contrast" in Table 5.7).
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We also examined differences in individual responses to air

pollution and weather for two other definitions of sickliness. First,

we split the subpopulation into those with FEVl greater or less than

that expected given the individual's sex, age, and height. Second, we

split the population into those with or without symptoms of chronic

obstructive pulmonary disease. For both comparisons, we found no

statistically significant differences in either the average responses or

between-individual responses. (See App. C for details.)
I

COMPARISONS OF OTHER SUBPOPULATIONS

We have also examined differences in responses between children and

adults (18 and over) and between smokers and nonsmokers. For both sets

of comparisons, there were no statistically significant differences in

average responses to air pollution. However, there was significantly

less between-individual variation in children's responses to NO2 than in

adults'. (See App. C for details.)

LENGTH OF EPISODE

We also examined how the length of the episodes varied with air

quality. The dependent variable was the logarithm of the number of days

in the episode. The independent variables included the same set of

nonaerometric variables used above. For the air quality measures, we

included the air pollution on the first day of the episode and on the

prior day. The response was estimated using a fixed effects model; that

is, each individual's variables were taken as a deviation from that

person's mean, and OLS was used on the deviated data.

We found no statistically significant association between air

pollution and the length of the episode F(10, 10386) = 1.06. Thus, we

believe that the response of time lost to illness (in days) is largely

captured by the number of episodes of illness.
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Our final approach was to analyze the intermediate-run effects of

cumulative exposure to air pollution over two-and-a-half to five years

upon the change in each individual's health from the beginning to the

end of the study. Each individual serves as his or her own control and

provides one data point for the estimation of effects.

METHODS

Sample

The samples for the study-long, health-effects analysis consisted

of the 2,386 people in Seattle and the 956 in Dayton for whom we had the

following information: (1) enrollment and exit health-status data, and

(2) 30 or more months of residence or work location data, so we knew the

levels of pollution they were exposed to. By design, everyone who

completed the study except newborns should have had medical history

questionnaire enrollment data. Thus, restricting the sample to those

with enrollment information costs very little in precision. One of the

health measures, lung function, was collected in the screening

examination that was given to all adults at exit, but to a randomly

selected 60 percent at entry. For this measure, we had to use an

efficient statistical method for combining the 60 percent with entry

values with the other 40 percent (Dagenais, 1971).

Restricting the sample to those with extensive pollution data

excludes those who moved early, and also the approximately 10 percent of

enrollees who did not complete the study for whom we have no exit

information. Most of those people left during the first year. Since

the pollution levels differ from season to season and year to year,

average pollution exposure for individuals with short periods of

pollution data differed systematically from that for people who stayed

in the study longer, and including them would have confounded the

results. Since we have exit health information on those who moved, we

Form and item nonresponse were very low on enrollment data
collection.
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did include people who moved after staying most of the time where we

could monitor pollution levels.

Dependent Variables

We assessed effects on the HIE's General Health Index, a summary

integrative measure of health perceptions, and a set of respiratory

health indicators. The GHI is based on answers to 22 questions for

adults and seven items for children (aged less than 14) that assess

health generally.' It is scaled from 0 (worst health) to 100 (best

health). The average for our full adult sample is 71, with a standard

deviation of 15.

For adults," our respiratory health indicators included

FEVl/predicted FEVl, a general measure of lung function, which should be

sensitive to widespread mild effects on the order of minor changes in

smoking behavior.4 We also used self-reported hay fever, chronic

bronchitis, shortness of breath, and frequency of chest pain (in Dayton,

pain when exercising) as measures of self-reported illness. For

children less than 14, we used two measures of illness: hay fever and

asthma. Information on all these measures is displayed in Table 6.1 for

Seattle; the Dayton values are similar.

The health measures were also used to define a susceptible group

for separate analysis. We hoped that this would shed light on overall

general results and give more precision to analyses of rarer problems.

The susceptible group of adults used in these analyses were those over

18 at enrollment who reported chronic bronchitis, congestive heart

failure, chest pain, or shortness of breath. These were 354 out of

1,502 adults in the Seattle sample and 120 out of 661 adults in the

Dayton sample. In the Seattle sample, there were 64 children who could

reasonably be deemed "susceptible"; in Dayton, there were too few to

There were actually two questionnaires, one used at entry in
Dayton and the other at entry in Seattle and at exit in both cities.

The cutoff age used by the HIE for adulthood varied with the
measure.

4Lung capacity depends on height, age, and sex, as well as disease.
We control these factors using the results of Kory et al. (1961) and
Kory and Smith (1974). See Foxman et al. (1982) for details.
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Table 6.1

EXIT VALUES OF DEPENDENT VARIABLES USED IN ANALYSIS

Variable

Direction
Standard of Better Time Period

Mean Deviation Range Health Considered

Adult GHI 72 15 0-100 + --

Hay 'fever status 1.44 0.8 1-3 -- last year
Shortness of breath 0.17 0.5 0-4 -- last 3 months
Chronic bronchitis
(phlegm) 0.12 0.4 0-3 -- last year

Chest paina 0.3 1.1 0-6 -- last year
Exercise pain 0.08 0.3 0-2 -- last year
Lung function (per-
cent pred. FEVl) 100 18 21-164 + --

Child GHI 77 15 30-100 + --

Hay fever status 1.34 0.7 1-3 -- last year
Asthma status 0.43 1.7 0-8 -- last year

aChest pain used in Seattle.
b
Exercise pain used in Dayton because chest pain not available.

even attempt a statistical analysis (because hay fever was not on the

Dayton enrollment child-health questionnaire.

Air Quality Variables

In this analysis, we began with six measures of air quality:

average TSP, S02, COH, and CO; average daily maximum ozone; and maximum

hourly ozone over the course of the study. (See the discussion of

exposure in Sec. II for more details.) The maximum hourly ozone measure

was used only in Seattle, since that measure did not exhibit enough

geographical variation in Dayton to make it useful. CO was used in

Dayton but not Seattle. All measures except maximum hourly ozone were

averaged over the full period for which we had data. Correlation

analyses showed that the various measures of long-run air quality were

relatively independent in Seattle, with COH and SO2 having a pairwise

correlation of 0.45, and the rest of the pairwise correlations all below

0.25. We dropped COH from the Dayton analysis because we found COH,

so2, and ozone to be highly correlated. TSP and CO were not correlated

with any of the other measures. For most analyses, we split the



- 67 -

population by exposure quartiles for each measure and contrasted those

whose air quality was in the worst one-fourth and the second-worst one-

fourth against those in the best half. Because there did not appear to

be strong nonlinearities in health effects, we can use the measures

directly. The results with continuous measures of air pollution are

quite similar to the results with indicator variables.

Because air quality can have short- and long-run effects on health

status, we also used measures of air quality in the month preceding

measurement at the start and end of the study. We expected that the

general health measures--General Health Index, lung function--would be

most affected by immediate experience. Also, the shortness-of-breath

scale was based on recall of only the most recent three months. Even

the other specific disease measures, which asked for experience over the

past year, could have been colored by recent experience. By taking the

difference between air quality at the exit exam and at the enrollment

exam, we obtain a measure that is independent of long-run average

experience, and should capture short-run effects on the final outcome.

In Seattle, the enrollment SO2 values were unusual--negatively

correlated with the long-run average--so we used only the exit value.

In Dayton, SO2 was measured for only half the participants at exit, so

we used only the enrollment values as an independent variable.

Model

Did air quality over the course of the study affect health at exit?

To answer that question, we used regression methods to estimate effects

of exposure history controlling for initial value of health, age, sex,

race, education, smoking history, and time in study (3 or 5 years).

Because health is stable over time, the most important explanatory

variable is the health measure at enrollment. This can be incorporated

in three ways: First, by looking at changes over time:

Health (exit) - health (entry) = a + bl x age + (1)

b2 x pack years . . . + c
1
x ozone + c2 x TSP . . .
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Second, by bringing health at entry to the right-hand side and not

constraining its coefficient to be one:

(2) Health (exit) = d x health (entry) + a + b
1

x age t (2)

b2
x pack years . . . + c

1
x ozone + c2 x TSP . . .

Third, by omitting entry health altogether--dropping d x health (entry)

from Eq. (2):

Health (exit) = a + bl x age + b2 x pack years . . . (3)

+c
1

x ozone + c2 x TSP . . .

The advantage of Eq. (3) is that long-term effects on people whose air

quality exposure is fairly stable over time will also be seen in health

at entry, so that taking differences as in the top two equations will

dilute the apparent effects of lifetime air quality. The disadvantage

of the last (cross--sectional) approach is that it is very vulnerable to

bias arising from selection by people of where they live and work.

Equation (1) is best against bias, but is overly affected by random

variation of health at entry. In Eq. (2), the regression method selects

the appropriate weight to put on health at enrollment, and this middle

specification is the one presented most often in this section.

RESULTS

Adults

The GHI is the most aggregate measure of health effects studied.

For adults, the effect on general health status exerted by each air

quality measure taken separately is shown in Table 6.2. Dashes indicate

t-values less than one in absolute value, and the blanks on the best

quarter indicate it was the group against which the others were

compared. Maximum hourly ozone measure had significant adverse effects

in Seattle. People in the worst two quarters for average daily maximum
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Table 6.2

EFFECTS OF SINGLE POLLUTANTS ON ADULT GENERAL HEALTH INDEX

Variable
Ozone Ozone

TSP SO2 COH Average Max. CO

Seattle (N = 1640)

Worst quarter -1.0 -- -1.0 -l.ga --

Second-worst -1.4 0.9 -- -2.3a --
Second-best -1.4 -- -- -- --
Best (reference group) -- -- -- -- --

Dayton (N = 661)
Worst -- -- -- --
Second-worst -2.5 -- -- -2.2
Second-best -2.1 -- -- -2.2
Best (reference group) -- -- -- --

NOTE : See subsection on methods for interpretation of GHI.
Numbers represent average differences in average GHI from those
with least pollution exposure. Only coefficients with a t-value
greater than 1 in absolute value are shown. Blanks indicate that
the variable was not included.

aSignificant at 0.05 level.

ozone had a GHI score of more than 2 points lower than those living in

the best areas by that measure. This is about one-fourth the difference

found between those with diabetes or chronic obstructive pulmonary

disease and those nondiseased adults in the sample. In Dayton, however,

there was no effect of ozone. Other air quality measures in Dayton and

Seattle had less significant adverse effects, except for S02, which had

an insignificant positive effect in Dayton. These results and further

results for lung function were not sensitive to a number of minor

variations: (1) whether the entry and exit exam values were used; (2)

whether air quality measures were split by quartiles (as in Tables 6.2

and 6.3) or entered linearly (as in Table 6.4); (3) whether teenagers

were included or not; and (4) whether air quality measures were

considered one by one, as in Table 6.2, or all at once, as in the

subsequent tables. Thus, in Tables 6.3 and subsequently, the results

give partial effects of each pollutant controlling for the others. The

initial value of GHI was by far the most important predictor of exit GHI.
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Table 6.3

REGRESSION COEFFICIENTS FOR GENERAL ADULT POPULATION,
SPLIT BY QUARTILES: SEATTLE

Variable

Shortness Chronic
Lung Hay of Bronchitis Chest

GHI Function Fever Breath (Phlegm) Pain

Initial measure 0.60a 0.44a 0.72a 0.3sa 0.28a 0.21a

Ozone

Max, worst quarter

Max, second worst

Avg, worst quarter

Avg, second worst

--

--

-2.1a

-2.6a

-0.12a

--

0.06 -0.04

O.Oga --

-- 0.03

--

--

+0.12

--

+0.11

TSP

Worst quarter
Second worst

-- 2.4 -0.08 -- -0.04 -0.27a
-- 2.1 -0.04 -- -0.04 -0.09 .

COH
Worst quarter
Second worst

--
-1.3 --

--
-0.05

--
-0.05

--
--

--
--

so2
Worst quarter
Second worst

--
+1.1

-- -- 0.06 0.03
1.3 -- 0.04 -0.03

Other variablesb
Sample size

R2

1,499 1,235 1,499 1,296 1,338 1,346

0.38 0.34 0.54 0.26 0.15 0.11

NOTE: Adults defined as 14 and over for GHI and hay fever, 18 and over
for shortness of breath, chronic bronchitis, and chest pain. See subsection
on methods for interpretation of GHI. Only coefficients with t-values greater
than 1 are shown.

aSignificant at 0.05 level.
b
Age, female, female x age, nonwhite, four measures of smoking

behavior, education, time in study (3 or 5 years).
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As shown in Tables 6.3 and 6.4, better lung function was associated

with poor air quality in Seattle, and the association with ozone was

significant. For the other four measures, a high score indicates more

disease, so a negative sign (as in hay fever) shows a positive

association of hay fever with good air quality, and positive signs (as

in the shortness-of-breath scale) show a positive association of

shortness of breath with poor air quality. For these diseases, higher

TSP is consistently associated with better health, and higher SO2 often

with worse health, in Seattle. However, virtually all of these effects

are not significant at the 5 percent level. There were fewer effects in

Table 6.4

EFFECTS ON GENERAL ADULT POPULATION, ENTERED CONTINUOUSLY: SEATTLE

Variable

Shortness Chronic
Lung Hay of Bronchitis Chest

GHI Function Fever Breath (Phlegm) Pain

Initial measure 0.60 0.47

Ozone max -- 74

t -- 2.76a

Ozone average -678 613

t -2.54a 1.64

TSP average -- --

t -- --

COH average 5.7 --
t 1.3 --

SO2 average --

t --

Other variablesb
Sample size 1,499

R2 0.38

--

--

1,313

0.72

-2.55

-2.80a

16

1.26

-0.0044

-2.57a

0.35
1.69

--

--

1,499

0.54

0.34

0.79

1.02

11.50

1.08

0.28 0.21

-0.73

1.14

--

--

10.90

1.23

--

--

-- -0.002 -0.006

-- -1.68 -1.9ga

--
--

--
a-

--
--

--

--

--

--

--

--

1,296 1,338 1,346

0.26 0.15 0.09

NOTE : See notes for Table 6.3.



- 72 -

Dayton, as shown in Tables 6.5 and 6.6. Indeed, most of Table 6.5 is

blank.

In Seattle, results for the susceptible population are generally

less significant, because the sample is much smaller (Tables 6.7 and

6.8). The negative coefficients relating the GHI to air quality are as

large as those for the general population, but they are not significant.

The consistent associations between poor air quality and better lung

function are not present in the susceptible group, and indeed, the

effects of ozone are reversed. The associations between bad air quality

and shortness of breath are much larger in the susceptible group.

Table 6.5

EFFECTS ON GENERAL ADULT POPULATION, SPLIT BY QUARTILES (DAYTON)

Variable

Shortness Chronic
Lung Hay of Bronchitis Exercise

GHI Function Fever Breath (Phlegm) Pain

Initial measure 0.68 0.68 0.60 0.56 0.39 0.30

Ozone
Worst quarter
Second worst

-- -- -0.19 -- -0.06 -0.05
-- -- -- 0.13 -- --

TSP

Worst quarter -- -- -O.lga -- -- --
Second worst -- -- -- -- -- --

COH
Worst quarter -- -- -- -- -- --

Second worst -- 2 -- 0.09 -- -0.05

so2
Worst quarter -- -- -- -- -- --

Second worst -- -- -O.lga -- -- --

Other variablesb
Sample size 661 494 637 540 546 572

R2 0.39 0.41 0.27 0.29 0.20 0.20

NOTE : See notes for Table 6.3.
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Table 6.6

EFFECTS ON GENERAL ADULT POPULATION, ENTERED CONTINUOUSLY: DAYTON

Variable

Shortness Chronic
Lung Hay of Bronchitis Exercise

GHI Function Fever Breath (Phlegm) Pain

Initial measure 0.68 0.65 0.61 . 0.56 0.39 0.30

Ozone -- -- -18 -- -7 -4.3
t -- -- -2.39 -- -1.64 -1.13

TSP average -- -- -0.005 -- -- --
t -- -- -2.01 -- -- --

CO average -- -- -- 0.16 -- -0.10
t -- -- -- 1.12 -- -1.56

.SO2 average -- -- -75 -- -- --

t -- -- -2.80 -- -- --

Other variablesb
Sample size 661 523 637 540 546 572

R2 0.38 -- 0.27 0.29 0.20 0.20

NOTE : See notes for Table 6.3.
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Table 6.7

EFFECTS ON SUSCEPTIBLE ADULT POPULATION, SPLIT BY QUARTILES: SEATTLE

Variable

Lung Shortness Chronic
Func- Hay of Bronchitis Chest

GHI tion Fever Breath (Phlegm) Pain

Initial measure 0.6 0.53 0.65 0.32 0.19 0.21

--
--
--
--

-0.11
--

--
0.20

--

--

335

0.50

Ozone
Max, worst quarter
Max, second worst
Avg, worst quarter
Avg, second worst

--
-2.4
-2.0

--

--
--

--
0.11
--
--

-- --
-- --
-- --
-- 0.27

-3.60
--

TSP
Worst quarter
Second worst

-2.1
--

0.12
--

--
-0.09

--

-0.31

COH
Worst quarter
Second worst

--
--

--

-0.16
--
--

so2

0.21a

0.15

Worst quarter  

Middle quarter

Other variablesb
Sample size

R2

--

2.70

--

--

--

0.4ga

352 291

0.42 0.46

316

0.35

332

0.20

351

0.19

NOTE: See notes for Table 6.3.
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Table 6.8

EFFECTS ON SUSCEPTIBLE ADULT POPULATION, ENTERED CONTINUOUSLY: SEATTLE

Variable GHI

Lung Shortness Chronic
Func- Hay Of Bronchitis Chest
tion Fever Breath (Phlegm) Pain

Initial measure
Ozone max

t
Ozone average

t
TSP average
t
COH average
t

SO2 average

t

Other variablesb
Sample size

R2

0.6
--
--

-850
-1.48
-0.13
-1.5
9.8
1.05
--

0.51
--
--
--
--
--
--
--

0.66
-3.5
-1.56

--
--

-0.007
-1.5
0.68
1.34
--

0.31
--
--

42.5
1.35
--
--
--

0.20
--
--

25
1.00
--
--
--

352 319 335 316

0.42 -- 0.50 0.33

332

0.20

0.20
--

351

0.16

NOTE : See notes for Table 6.3.
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In Dayton, the effects of air pollution on the health of

susceptibles are insignificant (Table 6.9 and 6.10), as would be

expected from the insignificant effects on the general population. The

negative coefficients relating the GHI to air quality are larger than

those for the general population, but they are not close to significant.

The associations between poor air quality and better lung function, less

hay fever, and less exercise pain are more consistent and stronger in

the susceptible group. The results for exercise pain are the most

striking. Since "never exercise because of chest pain" is scored the

same as pain while exercising, this correlation is not the result of

Table 6.9

EFFECTS ON SUSCEPTIBLE ADULT POPULATION, SPLIT BY QUARTILES: DAYTON

Variable GHI

Lung Shortness Chronic
Func- Hay of Bronchitis Chest
tion Fever Breath (Phlegm) Pain

Initial measure 0.56 0.55 0.55 0.53 0.27 0.15

Ozone
Avg, worst quarter

Avg, second worst

-- -- -0.32

-- 6 --

-0.51

--

-- -0.31

-- -0.26a

TSP

Worst quarter
Second worst

-- 7a
-5 4

--
--

--
--

--
--

-0.31a
--

CO
Worst quarter
Second worst

-- 7
-7 5

--
--

--
--

-- -0.32
-- --

so2
Worst quarter
Second worst -- --

--
--

--
--

--
--

0.20
--

Other variablesb
Sample size

R2

122 103 121 115 115

0.46 0.56 0.34 0.39 0.22

116

0.43

NOTE : See notes for Table 6.3.
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Table 6.10

EFFECTS ON SUSCEPTIBLE ADULT POPULATION, ENTERED CONTINUOUSLY: DAYTON

Variable

Initial measure

Lung Shortness Chronic
Func- Hay  of Bronchitis Exercise

GHI tion Fever Breath (Phlegm) Pain

0.64 0.40 0.47 0.54 0.21 0.08

Ozone average -- 378 -26 -45 -25 -36
t -- 1.29 -1.25 -1.53 -1.56 -2.41

TSP average -- 0.13 -0.008 -- -- -0.012
t -- 1.05 -1.17 -- -- -2.48

CO average -7.5 -- -- -- -- -0.58
t -1.04 -- -- -- -- -2.29

SO2 worst -- -- --. 1,776 -61

t -- 2.18 -- -- -1.16 --

Other variables
Sample size

R2

116 108 115 115 115 116

0.43 -- 0.29 0.34 0.21 0.37

NOTE : See notes for Table 6.3.

people staying inside. Perhaps it reflects selection out of low-air-

quality areas by people with angina.

In the model that produced the results in Tables 6.3 through 6.10,

exit health was a linear function of entry health and other variables.

We also looked at two other specifications. First, we used change in

general adult GHI and lung function, entry to exit, as the dependent

variable, i.e., Model (1) above. The results for effects of air

pollution on changes in health were similar to results for exit health

values regressed on initial. This is not surprising since both the GHI

and lung function are quite stable over time. Thus, the coefficients of

the initial measure shown in the tables on general adult health are not

too different from +1 (the value implicitly assumed by studying

changes).
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Second, we considered the purely cross-sectional results of

regressing exit GHI and lung function values on cumulative exposure to

air pollution during the study period. These results are shown in

Tables 6.11 and 6.12. Since there is no adjustment for the stable

differences between people, much less of the variation in the health

measures is explained (R2 is much smaller).

In Seattle, the associations with air quality for both the GHI and

lung function stay the same. Since both the change in health and exit

health are similarly correlated with air quality, it seems that the

Table 6.11

EFFECTS OF POLLUTANTS ON HEALTH IN SEATTLE:
A CROSS-SECTIONAL ANALYSIS

Variable

General General
Health Lung Health Lung
Index Function Index Function
(End) (End) (Start) (Start)

Ozone

Max, worst quarter

Max, second worst
Avg, worst quarter

Avg, second worst

TSP

Worst quarter --
Second worst --

COH
Worst quarter
Second worst

so2
Worst quarter

Second worst

Other variablesb
Sample size'

R2

-1.1
-1.6

-3.0a

--
--

--

--

1,642 1,235 1,649 667

0.08 0.04 0.17 0.13

4.ga

3.sa
1.5

2.5

-- -- -6.1a
-- -- -2.4

--
--

--

--

-- --

-1.4 3.1
-- --

-- --

-- --
-- --

-- --

-1.5 -4.2a

NOTE : See notes for Table 6.3.
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Table 6.12

EFFECTS OF POLLUTANTS ON HEALTH IN DAYTON:
A CROSS-SECTIONAL ANALYSIS

Variable

General General
Health Health
Index Lung Index Lung
(End) Function (Start) Function

Susceptibles (End) Susceptibles (Start)

Ozone

Worst quarter

Second worst

TSP
Worst quarter
Second worst

CO
Worst quarter

Second worst

so2
Worst quarter
Second worst

Other variablesb
Sample size

R2

-8 -8a -lla -6

-- -6a -4 -5

-5 -5 -5 -3
-6 -3 -- -4

--

-ga

--
-7

116

0.32

-- -- --

-- -4 . -5

-4 -- --

265 116 265

0.23 0.39 0.23

NOTE: See notes for Table 6.3.

initial value, the variable used to adjust for stable differences, must

not be highly related to subsequent air quality. This conjecture is

somewhat borne out by the last two columns of Table 6.11. General

health is not greatly associated with subsequent ozone, and poorer lung

function is associated with higher TSP and SO2 levels. How can health  

change and exit health be associated with pollution levels during the

study while initial health is not? One possible explanation is

geographical sorting prior to the study. Another is that air quality

before the study started is not highly correlated with subsequent air

quality, and that there are noticeable medium-run responses to the

change. Another explanation is that the increased precision of the
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before-and-after technique reveals something missed by the cross-

sectional approach.

In Dayton, on the other hand, the cross-sectional analysis yields

consistent positive associations between low air quality and both the

GHI and lung function. Contrasting the cross-sectional with the

longitudinal analyses, we see that poor health may be related to low air

quality cross-sectionally, but that the relationship does not increase

over time. The cross-sectional relationship may be due to selection or

previous long-term exposure, but exposure over the three years of the

study does not seem to have had many effects.

We incorporated variables representing air quality for the month

before the initial and final exams. These short-term effects on

physiological measures were generally weak, but in the right direction

(adverse). Because short-term air quality was not highly correlated

with long-term air quality, inclusion or exclusion of short-term

measures had little effect on the estimated effects of long-term air

quality.

Children

The GHI for children under 14 was associated with air quality in

Seattle in a peculiar way (Tables 6.13 and 6.14). There were strong

associations of better health with higher levels of TSP and lower levels

of ozone. Hay fever was not associated with air quality, but higher

levels of ozone were related to more asthma.

The Dayton results were more consistent, if unexpected. Higher

levels of all air pollutants were associated with better general health

and less hay fever (Table 6.15). Several of these effects were

significant. Asthma was not associated with air quality.

The sample of susceptible children in Dayton was too small to be

analyzed. Even in Seattle, the sample of susceptible children with

complete information was so small that only very large effects would

have been significant. No such effects were found, but the right halves

of Tables 6.13 and 6.14 show some marginal effects. The (positive)

effect of TSP on general health disappears, but otherwise the results

for sickly children are similar to the results for all children.
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Table 6.13

EFFECT OF AIR QUALITY ON HEALTH IN CHILDREN UNDER 14,
SPLIT BY QUARTILES: SEATTLE

Variable

All Children Susceptible Children

General Hay General Hay
Health Fever Asthma Health Fever Asthma

Initial value 0.42a 0.63a 0.52a 0.45a 0.08 0.54a

Ozone
Max, worst quarter --

Max, second worst 3.1

Avg, worst quarter -3.8a
Avg, second worst -2.6

--

--

--
--

TSP

Worst quarter

Second worst

6.4a -- -- -- --

8.6a -- -- -- --

COH
Worst quarter
Second worst

-- --
-- -0.17

so2
Worst quarter  --
Middle quarter --

Other variablesb

0.14
--

-- -- --

0.8a -- --

O.ga -5 --
0.4 -- --

-- -6 --
-- -- --

-0.4 -- --
-- -- --

-1.5

--

1.6
--

--

--

--
--

-1.0
--

Sample size 630 423 251 0.41 0.19 0.51

R2 0.25 0.34 0.27 64 63 37

aSignificant at 0.05 level.
b
Age, female, female x age, nonwhite,

behavior, parents' education,
two measures of parental smoking

time in study (3 or 5 years).
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Table 6.14

EFFECTS OF AIR POLLUTION ON HEALTH IN CHILDREN UNDER 14,
ENTERED CONTINUOUSLY: SEATTLE

Variable

All Children Susceptible Children

General Hay General Hay
Health Fever Asthma Health Fever Asthma

--
Initial value 0.43 0.64 0.53 0.43 0.12 0.51

Ozone q ax -0.49 -- -- 187 -9.8 --

t -1.10 -- -- 1.12 -1.06 --

Ozone average -1,175 -- 340 -- --  1,123
t -1.73 -- 2.69 -- -- 2.02

TSP average -- -- -- -- -- --
t -- -- -- -- -- --

COH average -- 0.89 1.88 -- 4.0 7.8
t -- 1.62 1.12 -- 2.39 1.40

SO2 average -- -- -130 -- -82 -419

t -- -- -1.55 -- -1.01 -1.41

Other variablesb
Sample size 629 423 251 64 63 37

R2 \ 0.23 0.34 0.25 0.39 0.24 0.50

NOTE: See notes for Table 6.13.
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Table 6.15

EFFECT OF AIR QUALITY ON HEALTH IN CHILDREN UNDER 14,
SPLIT BY QUARTILES: DAYTON

Variable
General Hay
Health Fever Asthma

Initial Value

Ozone

Avg, worst quarter

Avg, second worst

TSP
Worst quarter
Second worst

CO

Worst quarter
Second worst

so2
Worst quarter
Second worst

Other variablesb
Sample size

R2

1.04 --

7.3a --

6.5a --

-- -0.21
-- -0.22

4.6 -0.46a
-- -0.17

-- 0.29
--

283 269

0.19 0.10

0.41

--

--

--
0.49

--
--

--
--

109

0.37

NOTE: See notes for Table 6.13.

.
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CONCLUSIONS

In the general Seattle sample, GHI seemed adversely affected by

ozone, and better lung function was associated with most of the measures

of air quality. The picture for specific diseases is less clear. Among

susceptibles, both the negative effects on general health and the

positive effects on lung function are less significant; indeed, ozone

may have a negative effect on lung function, but the results are not

significant enough for clear interpretation. Either the effects are

weak, or there are simply not enough susceptibles here to show much.

For children, most of the results are in the "right" direction, but few

are significant.

Effects in Dayton were even less significant than those in Seattle,

and many showed an unexpected association of better health with poorer

air quality (Table 6.16). In fact, we did not find a single significant

effect of lower air quality in Dayton. The general health of adults was

unrelated to air quality, but hay fever and lung function in susceptible

Table 6.16

EFFECT OF AIR QUALITY ON HEALTH IN CHILDREN UNDER 14,
ENTERED CONTINUOUSLY: DAYTON

Average

Initial Value

General Hay
Health Fever Asthma

1.12 -- 0.39

Ozone average 1,071 -20 --
t 3.26 -1.07 --

TSP average 0.10 -0.006 --
t 1.26 -1.42 --

CO average 6.4 -0.51 --
t 1.46 -2.07 --

SO2 average 2,026 -- --

t 1.90 -- --

Other variablesb
Sample size 283 269 109

R2 0.19 0.08 0.35

NOTE : See notes for Table 6.13.
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groups and hay fever and general health in children were associated

in the "wrong" way. Ozone, in particular, was generally related to

better health. Specific health problems showed even more insignificant

results than the general health measures. The main reason for the lack

of significant effects in Dayton is probably sample size.

This study of intermediate range effects used a before-and-after

method instead of the cross-sectional approach most commonly seen.

Using initial status as a control reduces the problem of selection bias,

but allows us to look only at changes over the course of observation

(here 3 or 5 years). The cross-sectional approach will be relatively

better if people do not move much and select work and home locations

independently of pollution levels, and if air pollution effects on

health are gradual. If people do move in such a way that health is

correlated with pollution, then cross-sectional studies can be quite

misleading. As it turned out, the cross-sectional results differed

between Seattle and Dayton, evidence that selection may be more

responsible for these observed results than accrued damage to health.

Ideally, one would like a before-and-after design with a very long

period for health effects to appear, but follow-up in such studies is

difficult and expensive.
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V I I . DISCUSSION

The results in the preceding sections exhibit a mixed set of

associations between air pollution and the three classes of health

outcomes: use of outpatient medical services, time lost due to illness,

and health status. They also exhibit a mixed set of results depending

on the method used to estimate the adverse effect of air pollution. In

many cases, higher levels of air pollution are associated with better

health outcomes.

Closer examination reveals several patterns. Two of those are of

special note because they dominate the overall pattern of "perverse"

results, where higher levels of air pollution are associated with better

health outcomes. First and most striking is the large number of

significant results for ozone. Ozone was responsible for many of the

significant effects--largely positive (beneficial) in the case of

outpatient health expenditures and time lost to illness, and both

positive and negative (adverse) in the case of the health status .

measures. There were positive estimates for ozone from both the annual

(cross-sectional) and panel results and from both the short-term and

intermediate-term results.    

The second trend is the large number of significant results

obtained in the aggregated day-to-day approach, which is a panel

analysis for a fixed population. Three quarters of the estimated

effects are significant at the 10 percent level, and half are

significant at the 1 percent level. Of the significant results, half

are positive (beneficial). All of the pollutants except CO have at

least one significant and "perverse" positive effect.

In contrast, the individual daily analysis in Seattle (based on the

random-effects model) yields negative (adverse) estimates for all of the

pollutants except ozone. SO2 and NO2 are statistically significant for

the average person at the 1 percent level.

The other panel analysis was the examination of air pollution

effects on health status. Except for ozone, we observed few

statistically significant effects of air pollution on health status.
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This was was true for both sites, for children and adults, for the

general population, and for the susceptible (i.e., sickly) population.

We did observe some significant results for some of the scales for

specific diseases. The significant results were of mixed sign. Of the

18 non-ozone results, only one was significant at the 10 percent level.

If there were no true effect, we would expect to see about two

significant findings just at random at the 10 percent level.

The results for the annual analyses are mixed. Those results are

obtained by allowing for correlated responses in a manner that ignores

the possibility that individuals may geographically sort themselves out

in response to air pollution. Hence, the method has embedded in it the

same potential for bias that exists in pure cross-sectional approaches.

Except for ozone, only 2 out of 18 results are significant at the 10

percent level. One is negative (adverse) and the other positive .

(beneficial). If there were no true air pollution effect, we would

expect to get one positive and one negative significant result at

random.

By and large, the results for the pollutants other than ozone are

not statistically significantly different from zero, aside from those

obtained from the aggregated daily approach. For the other three

methods, no pollutant showed more than two significant effects out of an

average of eight possibilities each.

The effects of pollution on health did not vary in any easily

generalizable way between Seattle and Dayton. The overall effects of

pollution were the same for each city as they were for both taken

together, i.e., generally mixed and insignificant with a tilt toward the

positive. Breaking it down by pollutant, there were many instances of

varying results, but the general summary given above for both cities

together could apply almost as well to each considered separately.

Our several analyses of susceptibles provided results that were

consistent with those of the population as a whole. However, the

failure to find a greater sensitivity to pollution among susceptibles

probably reflects our lack of precision. For example, in the before-

and-after comparisons of the intermediate term effects of air pollution

on health status, we generally found larger effects for susceptibles.

These larger effects were not large enough to compensate for the
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reduction in sample size. In a general population study of the nonaged,

there are few very susceptible individuals.

This summary of our findings should not be construed to mean that

air pollution has no appreciable or significant adverse effect on health

outcomes. There are a number of methodological reasons why we could

have obtained these largely null findings, or in the case of ozone, a

counterintuitive result. In the following, we discuss 'these findings

with special attention to the methodological lessons to be drawn.

OZONE

It is so commonly assumed that air pollution is bad for health

under all circumstances that our finding that ozone is frequently

associated with significant beneficial short-run effects seems puzzling.

There are a number of methodological or threshold explanations for why a

pollutant would show no ill effect on health in a given study. It is

more difficult to understand how an air pollutant could be consistently

found to have a significant association with improved health. We

suspect that the ozone results are due to a confounding of ozone with

meteorology or some other omitted variables that have an independent and

beneficial effect on health outcomes. The levels of ozone in these two

cities may be low enough that the adverse effects of ozone are

outweighed by any beneficial effects of the omitted but correlated

explanatory variables.

Our ozone findings are not inconsistent with chamber studies and

prior observational analyses. Chamber studies have indicated that ozone

exposure at levels as high as 0.3 to 0.4 ppm can be tolerated without

adverse effects by individuals sitting quietly in the chamber (Adams et

al., 1981). Exercising individuals demonstrate acute effects at much

lower levels, usually starting around 0.20 to 0.24 ppm (Avol et al.,

1983; Brookshire et al., 1982; Delucia and Adams, 1977; Evans et al.,

1976). Experts in chamber studies indicate that susceptible individuals

under exercise conditions may respond adversely at 0.12 ppm, the federal

standard (Adams et al., 1981). Only a small number of the chamber

studies have used levels below 0.12 ppm. Few have recorded effects

below about 0.2 ppm, even for exercising individuals (Folinsbee et al.,

1978; Javitz et al., 1983).
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Thus, there are no chamber data to suggest that ozone

concentrations well below the federal standard produce measurable or

appreciable short-term adverse effects. The effects threshold appears

to fall somewhere between 0.12 and 0.4 ppm, depending on the

susceptibility and activity of the exposed person.

A number of studies have suggested no ozone effect or even a

positive effect on free-living populations, especially where ozone

levels studied have not been high. For instance, reanalysis of data

from Houston by Javitz et al. (1983) at SRI International indicates a

small, consistent drop in the probability of symptoms as the ozone level

increased from zero to concentrations of 0.03 to 0.09 ppm. Once ozone

levels reached 0.12 ppm, the probabilities of many symptoms began to

increase and continued to do so as ozone levels rose further, thus

replicating the findings of the chamber studies. It should be noted

that these are symptoms and not lung function measures.

The levels of ozone to which our sample was exposed fell well below

the range at which the chamber and Javitz studies showed adverse

effects. Seattle experiences very little ozone exposure over the one-

hour federal standard. The exposure in Dayton is substantially greater,

but even the highest concentrations did not exceed 0.2 ppm--below the

ozone level at which most chamber studies have shown effects for

exercising individuals.

The ozone results may reflect the confounding of ozone with some

omitted but beneficial variable. For example, the absence of variables

on cloud cover may impart a small but statistically significant bias to

the results from the individual daily time series if individuals in

Seattle are less likely to be ill or feel blue when it is sunny.' A

similar bias may have been introduced into the aggregated daily time

series by the omission of meteorological variables,

Alternatively, the ozone effect may be related to the short-term

positive reaction that many people have on being exposed to light

negative ions. Negative ions are produced by electrical equipment

(including ionizers, of course), thunderstorms, sunshine, and wind.

'Our analyses adjust for precipitation and temperature, but not
sunshine.
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Regardless of the source, production of negative ions is almost

invariably accompanied by the production of low levels of ozone. The

positive reaction to negative ions may reduce symptoms, the recognition

of symptoms, or complaints of symptoms. In our study, these would

translate into fewer visits to physicians and less sick loss.

Despite the short-run positive association of ozone with healthier

outcomes at low levels of pollution, there may be underlying and ongoing

damage associated with this low-level ozone exposure which would only be

expressed in long-term effects. The health status findings for ozone in

Seattle are consistent with a longer term adverse effect, when the short

term use of services and sick-loss exhibit a positive association.

Detels et al. (forthcoming) report possible long-term effects of oxidant

exposure, including possible cumulative damage associated with ozone

concentrations below 0.10 ppm. Obviously, further research into this

entire problem would be very helpful.

METHODS EFFECTS

Aggregated Daily Time Series

Our results are sensitive to the methods used to do the analysis.

In particular, the aggregated day-to-day approach yields many

significant findings, most of which are of the wrong sign, i.e., they

indicate a beneficial association of air pollution with health outcomes.

For a given pollutant, the effects do not even have the same sign for

the two different sites and the two outcomes analyzed. Despite the

significance of the results, the magnitude of the effect is typically

quite small. A doubling of the air pollution level is usually

associated with a change in the health indicator of about 2 to 4

percent.

Why the aggregated daily approach "misbehaves" is an open question

at this point. Given the size of the inference statistics and the small

effects of a doubling in the level of air pollution, it is clear that

this method has the precision to pick up small effects, including those

where a doubling of the air pollution level would be associated with

changes in visit rates and sick-loss of only 2 percent. We suspect that

the aggregated time series may be picking up the beneficial aspects of

other factors correlated with higher levels of air pollution. A likely
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suspect is the day-to-day variation in meteorological conditions; our

specification controlled for monthly and day of the week effects, but

not cloud cover, temperature, or precipitation. Whatever the

explanation, this easy-to-use method clearly requires more scrutiny

before a decision is made as to whether it should be applied routinely

in measuring air pollution effects.

Individual Daily Time Series

In contrast, the individual daily approach consistently yielded

estimates of adverse effects of air pollution on time lost to illness--

with the exception of ozone. On that basis alone, this technique may be

the more promising for valuing the benefits of regulating air quality

than the aggregated daily time series approach. In addition, there are

two methodological rationales for favoring the individual time series

approach. First, in this approach, we use the individual as his or her

own control and estimate the response to air quality and weather, rather

than trying to get some sort of average response over a population that

is quite heterogeneous in the response. Thus, we can tell whether

susceptibles or smokers or children are more or less responsive than the

rest of the population by doing a meta-analysis on the estimated

individual responses. Second, allowing each person to act as his or her

own control reduces certain exposure and data problems. If a person

lives in a dusty or poorly ventilated house, and dust affects the

person's behavior, it will be captured in his or her coefficients.

Third, we can do a much better job of estimating individual exposures in

the individual daily approach than in the aggregated approach. In the

former, we can use our estimate of the person's exposure, based on work

and home locations. In the latter, we can use only one value of each

pollutant for everyone, so we measure the individual's exposure with

more error. That measurement error yields biased estimates of the true

response to air pollution.

This study was the first to apply this technique to a general

population. The pattern of adverse effects of air pollution detected in

a moderately polluted city is evidence that the technique can detect the

adverse effects of air pollution when other techniques (e.g., cross-

sectional or aggregated time series) fail to give meaningful results.
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Before we make too much of this finding, however, we should remember

three things: First, this is in essence a case study of the technique

and is subject to all the limitations of a case study. Second, the

method yielded an unexpected negative correlation between the parameter

estimates and their standard errors. And third, the individual daily

approach is a costly one. Nevertheless, we find the results interesting

and the theoretical arguments convincing enough to warrant further study

of this technique. In the second phase of this research for EPA, we

will examine this technique more closely. That work will include (1)

simulation analysis to study the question of correlation between the

coefficients and their standard errors; and (2) applications of this

technique to other outcomes and to data from the Dayton site.

Annual (“Cross-Sectional”) Analysis

For the reasons stated in the Introduction, we had expected the

annual ("cross-sectional") approach to have the greatest likelihood of

producing "perverse" results. Instead, except for ozone, the annual

cross-sectional analysis basically showed no effects for air pollution

on the use of health services or time lost to illness. There are five

possible explanations for this. First, the absence of a result is

consistent with there being a true adverse effect that is wiped out by

the sorting phenomenon. If individuals who are more susceptible to the

adverse effects of air pollution move to less polluted areas of the

city, then the estimated effects of air pollution will be biased toward

zero or could have the "wrong" sign. Although we used very good

measures of health status, relative to those available on most general

population data sets, the measures are not perfect and our estimates

could be biased. Second, there may be no true effect in the range we

are observing and sorting may not be a problem. Third, the absence of

an effect could be due to aggregating over a year. The largest illness

effects may occur in the winter and the highest pollution levels in the

summer. The annual analysis should not "see" that time difference, and

thus would find no association. Fourth,'the use of an estimate of air

pollution exposure based on ambient air at monitoring sites will contain

a substantial amount of measurement error. All other things equal, this

measurement error will bias the estimates of air pollution toward zero
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in proportion to the ratio of the measurement error to the true error in

the equation (see Theil, 1971, pp. 607-615). Thus, there could be a

small but important true adverse effect of air pollution that would not

be detected because we relied on a proxy for true air pollution

exposure. Fifth, we may not have detected an adverse effect of air

pollution because of lack of variation in the exposure measure. As the

tables in the appendix on exposure indicate, there is much less

variation in average exposure over a period of a year, than there is

over a period of a day. Most of what little variation we do have at the

annual level is due to geographical differences in pollution levels.

The smaller the variance in the explanatory variable (e.g., SO,), the

larger the standard error of its coefficient.

Intermediate-Term Health Effects

We had expected that the use of a variant of the before-and-after

comparison would allow us to detect some adverse intermediate-term

effects of air pollution. The technique has the advantages that: (1)

the individual acts as his or her own control, thus reducing any bias

from geographical sorting; and (2) the inclusion of entry health status

as a covariate should reduce the error variance substantially and

increase the precision of the regression, because health status is

fairly stable over time. However, we found that of the non-ozone

findings for general health status and adult lung function, there were

about as many significant results as one would expect at random.

Does this mean that there are no true health status effects in our

two cities at these moderate levels of pollution? We think such a

conclusion would be improper. The absence of a significant effect may

be attributable to lack of precision. Given the measures we had of

general health status, lung function, and the variation in air pollution

across individuals, we had the precision to detect an effect of air

pollution if it were as large as the adverse effects of smoking one-

half to one pack of cigarettes a day over the same period. That is a

very large effect, and most people would be concerned if air pollution

had a substantially smaller effect than that. The culprit for our lack

of precision is again the lack of variation in air pollution over

periods of time longer than a few days. (See the discussion of exposure
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in Sec. II for the variation in exposure across individuals.) Low

variation in the pollutant measure implies a large standard error on the

estimated effect of air pollution.

To get away from this problem of low precision, one needs to have a

data set with several characteristics. First, the number of

participants must be substantially larger. A tenfold increase in our

sample size would reduce the detective effect to that of five to seven

cigarettes a day. Second, there should be a wider range of variation in'

the air pollution exposure of individuals. All other things equal, the

standard error of the estimate coefficient will go down as the square

root of the variance of the exposure measure. Third, an increase in the

number of susceptibles, who appear to have larger effects from air

pollution, would make it easier to detect an effect. Finally, better

measures of actual exposure (via personal monitoring or micro-

environmental analysis) would reduce the bias in the estimate

coefficient and enhance our ability to detect meaningful adverse effects

of air pollution.

Unfortunately, data sets with these characteristics and a

comprehensive set of measures on health outcomes (use of medical

services, time lost due to illness, and health status) collected on a

panel basis are expensive and time-consuming to generate. In the short

run, it will be important to see what we can learn from existing general

population data sets, despite their important flaws. One very promising

avenue of research is the further application of the Whittemore-Korn

technique to time series data on time lost due to illness and to the use

of medical services. Our work clearly suggests that this technique can

be useful in the assessment of short-term effects of air pollution.

Before embracing the individual daily approach or discarding the

others, however, it is important to realize that our findings are based

on only two sites. In fact, the individual daily approach was applied

to only one health outcome in one site. In addition, this is the first

time that this technique has been employed on a general population. The

only way to be sure that the patterns we have found are "real" is to do

further research in the same vein: including additional meteorological

data to control for factors which may explain the positive association

between ozone and health outcomes, and by applying a similar set of
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approaches to several cities or data sets. Ideally, future analysis

should include data from a long enough time series on people in a

general population to employ the individual daily time series approach.

Further research along those lines should allow us to reach a conclusion

as to which approach is the most effective for valuing the regulation of

air quality.
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Appendix A

SELECTION OF DATA

The first analytic choice we had to make was to select a data set

for the analysis. We looked for a data set with information on health

status, sick-loss days, and use of health services for a general

population (e.g., more than merely a subpopulation susceptible to

cardiopulmonary problems). Below we briefly describe the criteria that

we used in evaluating data sets, the advantages and disadvantages of

each data set, and our reasons for the final selection.

For the evaluation of effects of air pollution on health outcomes,

we examined the following data sets:

1. Health and Nutrition Examination Survey (HANES) I and II

2. Health Insurance Experiment (HIE)

3. Health Interview Survey (HIS)

4. National Medical Care Expenditures Survey (MNCES)

5. National Medical Care Utilization and Expenditure Survey

(MNCUES)

CRITERIA FOR EVALUATION

In evaluating the alternative data sets, we used seven criteria:

1. A preference for panel over cross-sectional data.

2. The ability to create good synthetic (proxy) measures of air

pollution exposure.

3. The ability to create good synthetic measures of weather.

4. Comprehensiveness of a single data set.

5. Presence of valid and reliable measures of health status.

6. Adequate within-site data.

7. Variation across sites in levels and types of air pollution.
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Panel Versus Cross-Sectional Data

We would prefer a panel (cohort) data set over a cross-sectional

one. In a panel data set, the longitudinal measurements on each

individual allow us to control for unobservable characteristics of each

individual. Thus, we do not have to rely on the untestable cross-

sectional assumption that the unobserved characteristics are

uncorrelated with the observed independent variables (including air

pollution). If this assumption does not hold, cross-sectional data can

yield biased estimates of the effects of air pollution. The direction

and magnitude of the bias cannot be determined a priori. For example,

if smokers are less likely to move away from smoggy areas (and if the

smoking measure has measurement error), then cross-sectional data will

overstate the effect of air pollution on cardiopulmonary problems. If

individuals who are susceptible to cardiopulmonary complaints move from

smoggy areas to less smoggy areas (and if the health status measure has

measurement error), then cross-sectional data understate the effects of

air pollution.

In contrast, with a panel data set these unobserved effects can be

netted out. For the ANOCOVA case, see the fixed effects model (Maddala,

1971; Searle, 1971). For our proposed methods for the analysis of short-

term health effects, see Whittemore and Korn (1980).

A panel study has three other major advantages over a cross-

sectional study. First, it usually provides finer detail on timing.

The finer detail on timing of health events allows us to create better

weather and air pollution exposure measures than is possible with data

aggregated over several months. The better the weather and exposure

measures, the lower the bias in the air pollution variable coefficients.

Second, panel data sets keep the movers and deaths in the sample,

whereas retrospective surveys frequently lose data on movers and deaths.

To the extent that air pollution may cause moves or earlier death, cross-

sectional data sets will tend to have sites with samples with different

unobserved characteristics, which will yield a biased set of estimates.

Third, with a panel data set, we can check any assumptions about

aggregation over time by examining the response in disaggregated as well

as aggregated form.

.
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Quality of Air Pollution Exposure Measure

Ideally, we would like to know each individual's history of

exposure to air pollution. This would include data on levels and timing

of all pollutants from any source--smoking, other indoor pollution

sources, and ambient air sources. Unfortunately, no existing data sets

continuously monitored each person's exposure to air pollution, with one

exception.' Instead, we must create synthetic measures based on

available data. These synthetic exposure estimates necessarily measure

exposure with substantial error. But that measurement error can be

reduced by selecting data sets that provide finer detail on geographic

location and the timing of health events.

This may be viewed as a classic errors-in-variable problem. Air

pollution exposure is measured with error because we do not have

continuous monitoring for each person. Instead, we use a proxy variable

such as a weighted average of surrounding monitoring stations. The

finer the level of data on work and home location, the closer the

synthetic measure will be to the person's true ambient air exposure.

The closer the measure to the true value, the smaller the variance in

measurement error and the smaller the bias in the estimated coefficient

for the air pollution variable (Maddala, 1977, pp. 292-294). Other

variables will also be affected by measurement error in the exposure

variable because the measurement error in one variable transmits bias to

all correlated independent variables. The finer the level of detail on

location, the less the transmitted bias will be.

The same argument holds for the quality of the temporal match of

health outcomes and air pollution exposure. Some data sets ask how much

time the respondent has lost from work or school due to illness during

the last several months. Without knowledge of the dates of illness, we

cannot create an accurate measure of air pollution that the respondent

was exposed to immediately before the illness. Similarly, we run the

risk that we will inappropriately estimate sickness from five months ago

as a function of last month's air pollution if we use a data set that

has information based on questions of the form: Have you ever . . .?

'The only data set available to date that continuously monitored
each person's air pollution exposure was collected in. EPA's recent Urban
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The quality of the match is especially important for transient

conditions. Some respiratory responses to air pollution are short-

term and not cumulative. The poorer the temporal match and the more

variable the exposure, the more likely we are to misestimate the effects

of air pollution on flare-ups of chronic respiratory diseases.

Quality of Weather Data Match

Ideally, we would like to control for the weather that an

individual is exposed to in order to avoid attributing to air pollution

the adverse health effects associated with bad weather. For example,

Denver tends to have its worst air pollution in the winter. But winter

is also the season with the highest rate of cardiopulmonary problems.

Failure to control for weather would overstate the adverse effects of

air pollution if bad weather and air pollution were positively

correlated, and understate the effects of air pollution if the two were

negatively correlated. A data set that fails to provide sufficient

information on location and timing, to allow matching with weather data,

is therefore undesirable.

Comprehensiveness of Data Set

Ideally, we would use the same sample and variable specifications

for all health outcome measures. For example, we should avoid taking

health status outcomes from one sample and sick loss from another. By

using the same sample, we have the same target population and the same

meaning for each independent variable. Thus, when we say the effect of

a variable is such and such, it means the same thing for each health

outcome.

By using the same data file, we can also measure the degree to

which the outcomes are correlated, that is, the extent to which large

changes in health status are associated with large expenditures and sick-

loss time. Knowing this correlation allows us to determine the pattern

of incidence of adverse effects. Are they limited to few people or to

many? If the responses are highly correlated, then we may be able to

Scale Study in Washington, D.C., and Denver, Colorado. However, that
data set does not contain any information on health outcomes.
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use a simple outcome measure as a good proxy for all the dimensions of

health.

Valid and Reliable Health Measures

For this analysis, we need valid and reliable measures of general

health status as well as the presence and severity of certain specific

health complaints (e.g., chronic bronchitis). We will need a general

health status measure if we are to detect the effect of air pollution on

health status in a population not suffering from chronic cardiopulmonary

problems. In such a population, the effect of air pollution may be

headaches, general malaise, and other "diffuse" problems.

We also need to measure the presence and severity of specific

cardiopulmonary problems. .The data on presence of a condition will

allow us to identify the population that is most susceptible to air

pollution and to measure that susceptibility. The data on severity of a

condition is important because we expect that the major effect of air

pollution is to worsen existing conditions instead of cause them in the

first place.

For both general and specific complaints, we would prefer objective

continuous measures (e.g., lung functions from a spirometric

examination) or scales based on multiple items over the commonly

available single-item response (e.g., How would you rate your health--

excellent, good, fair, poor?). The coarser measures have suppressed a

good deal of information about health status in their simplification.

That additional information would make it easier to detect smaller

adverse effects of air pollution.

Adequate Within-Site Data

In our original proposal, we suggested that all of the analysis

should be done within a site, with separate results for separate sites.

There were two major reasons for that suggestion. First, one unit of an

air pollution measure is not the same thing in two different sites

because different sites use different equipment and maintenance

schedules, and set different internal standards. Second, any omitted

variables correlated with site (and hence air pollution) can lead to

biased estimates of the response surface. Third, the response of those
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accustomed to air pollution exposure may be different for a given level

of pollutant from that of persons not so accustomed. Thus, while there

may be a dose-related response at each site, the response to a given

level may be quite different across sites.

The choice of panel versus cross-sectional data and a desire for

finer geographical and temporal detail are related to this point.

First, in a cross-sectional data set, all of the within-person variation

in air pollution exposure has been lost. If there is no within-person

variation for an individual in air pollution, we cannot identify the

individual component in the error term. To the extent that this

individual component may be correlated with health status or air

pollution exposure, the parameter estimates may be biased. Second, in a

cross-sectional data set, most if not all of the within-site variation

in air pollution has been lost if we cannot identify PSUs smaller than

SMSAs; staggered surveys such as the HIS are an exception. If there is

little or no within-site variation in air pollution, we cannot identify

the site-specific component in the error term; as Hausman, Ostro, and

Wise have shown, this can be important. Again, to the extent that

omitted site effects are correlated with unobserved variables (including

pollution mix and level), the parameter estimates will be biased. In

either case, whether there is bias or not, failure to account for

correlation among observations yields inefficient parameter estimates

and incorrect (biased upward) inference statistics.

In addition to possible bias and efficiency concerns, the

suppression of intrasite and intertemporal variation can cause a major

loss in precision. There is substantial intertemporal and intrasite

variation in air pollution, which is lost in cross-sectional data,

especially if the geographic detail is of low quality. The standard

deviation of a variable's estimated coefficient is inversely related to

the variance of the variable. Thus, eliminating intrasite and

intertemporal variation in air pollution reduces the variance in the

exposure measure, and increases the standard deviation of the estimated

coefficient.

Even if we pool all of the sites in the estimation phase, we would

like to have enough respondents in each site so that we could find

susceptibles in the heavily as well as lightly polluted sites. If this
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condition holds, we will be able to contrast the response of

susceptibles and nonsusceptibles to air pollution. .

Variance in Air Pollution Across Sites

There should be substantial variation in the level and mix of air

pollutants. We need variation in the levels of air pollutants in order

to detect the response to air pollution. We need variation in the mix

to determine the different effects of each pollutant. For example, TSP

may be more cumulative while oxidants may be transitory in their impact.

ALTERNATIVE DATA SETS

Using the criteria just described, we examined five data sources:

HANES I and II, the HIE, the HIS, NMCES, and NMCUES.

HANES I and II

The HANES surveys by the National Center for Health Statistics

(NCHS) provide cross-sectional data on health and nutrition. Conducted

in 1971-1974 and 1976-1980, they provide data on some 28,00 and 21,000

individuals in national probability samples, respectively. HANES

determined the prevalence of a number of chronic conditions including

coughing, asthma, hay fever, and other cardiopulmonary conditions.

HANES I provides no self-reported measure of the severity of each

respiratory complaint, but HANES II provides data on total work or sick-

loss days during the past 12 months that were attributable to

respiratory problems (other than flu and colds). There are no data on

dates of sick loss. Both versions have spirometry measurements of lung

function for some subset of the respondents. The only general measure

of health status is the question of whether health is excellent, good,

fair, or poor.

The HANES data have extremely limited information on use of health

services. Most questions are of the form: Have you ever seen a doctor

or been hospitalized for condition X? There is no information on how

much the person has spent on the condition, or when and how often he

spent it.
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The ability to create synthetic measures of air pollution exposure

is limited. The available geographic detail specifies the respondent's

SMSA only, and then only for the largest SMSAs. Both HANES data sets

contain information on smoking. Neither contains information on other

indoor air pollution sources.

HIE

The Health Insurance Experiment is a randomized trial, designed to

study the effects of cost sharing in HMOs on the health status, health-

care use, and sick-loss of the nonaged population. The HIE enrolled

some 7,770 individuals in six sites (Dayton, Ohio; Seattle, Washington;

Fitchburg, Massachusetts; Franklin County, Massachusetts; Charleston,

South Carolina; and Georgetown County, South Carolina). While none of

these sites were extremely polluted during the mid- and late 1970s, when

the HIE data were collected, each had substantial air pollution. None

of them met federal ambient air quality standards during that period.

In addition to the exclusions common to all the other data sets

(e.g., the military and the institutionalized), the HIE excludes the

aged (62 and over) and the top seven percent of the income distribution.

These twin exclusions (especially the exclusion of the elderly), the

smaller sample size, the small number of sites, and the absence of a

severely polluted site are the HIE's major limitations.

The HIE is a panel study. It contains repeated measurements of

health status (general and condition specific), as well as dated

information on health-service use and sick-loss days. The use-data

include information on diagnoses, procedures, and medication prescribed

and purchased. The general health status measure is a Likert-type

summated rating scale based on 22 questions. Thus, the construct is a

subjective assessment of personal health status. Its reliability and

validity have been extensively studied (Ware, 1976; Davies and Ware,

1981). Manning, Newhouse, and Ware (1982) have shown that this measure

performs significantly better than Excellent/Good/Fair/Poor in a study

of health-care utilization. The study contains several measures of

chronic and role limitations, the presence or absence of 26 chronic

conditions, and severity measures. For several of the chronic
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conditions, there exist multiple measures of prevalence and severity

based upon both self-report and physical examination (with lung function

measurement) by an M.D. The physical exam was administered to a random

subsample at enrollment in the study and to everyone at exit. The

report by Foxman et al. (1982) describes the measures for chronic

obstructive airway disease.

We can build better synthetic measures for the HIE than for any of

the other data sets. The HIE contains information on home zip code,

dates of moves, work zip code and hours worked, and (own and family

members') smoking status and history. Thus, we can build exposure

measures that incorporate data from the monitoring stations not only

nearest to the respondent's home but also to his work location. This

definitely has less measurement error than an SMSA average variable.

Also, it allows us increased precision through capturing the within-

site variance in the air pollution measure.

The HIE has one further advantage over all other data sets. The

HIE randomly assigned insurance plans of varying levels of generosity to

enrollees. In other data sets, families can choose their own coverage

by buying individual policies or by selecting which work-related policy

should be used for dependents. In the HIE, random assignment breaks

that correlation so that we can determine what is sickliness (here in

the cardiopulmonary sense) and what is insurance coverage.

HIS

The Health Interview Survey conducted by HCHS is a continuing

survey of health-related problems in the United States. Although there

are repeated waves of the survey in each site, the survey does not

resample the same set of individuals, except by accident. As a result,

the HIS has to be considered a cross-sectional survey if the unit of

analysis is to be an individual. Although similar in content, there are

differences among the waves in the specific information elicited from

respondents. About 120,000 individuals are sampled each year.

HIS determined the prevalence and severity of several chronic

complaints including cardiopulmonary conditions (e.g., asthma,

bronchitis). The severity questions ask (1) whether the individual is

bothered by the condition all the time, often, once in a while, or
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never, and (2) when it does bother him, whether he is bothered a great

deal, some, or very little. Because HIS is a survey, there are no data

on lung function. The HIS data lack a general health measure but do

contain information on chronic and role limitations due to ill health,

and which chronic condition is the main source of that limitation.

The HIS data contain fairly detailed information on health-care

utilization and sick-loss days during the past two weeks. The survey

contains questions on medical and dental visits, hospitalizations, work

or school-loss days, bed disability days, and restricted activity days.

In some waves of the HIS, the date of the visit or sick-loss day is

provided.

The ability to create synthetic measures of air pollution is

limited. The available geographic detail specifies SMSA only, and that

only for the largest SMSAs. Because the responses on health-care use

and sick-loss are dated or limited to a specified two-week period, the

quality of the temporal match of health events and air pollution is

good. The quality of the temporal match is probably exceeded only by

that for the HIE data. The HIS contains information on smoking, but not

on indoor air pollution sources.

NMCES and NMCUES

These two surveys are very similar in content and construction.

NMCES was conducted by NCHSR on a national probability sample of 40,320

people. NMCUES was conducted by NCHS on a national probability sample

of 17,000 people plus 24,000 people from the Medicaid population of four

states. Each survey conducted repeated interviews for the same sample

of individuals, with all responses and health events dated. Thus, the

primary data are in panel form. Unfortunately, the public use files

released from these two surveys have aggregated the responses into a

cross-sectional data set.

The information on health status is more limited than on the other

data sets. The two surveys contain data on general health status (the

excellent/good/fair/poor question) as well as responses to questions on

chronic and role limitations. Information on the existence of a chronic

condition was collected only if there was a medical visit, sick-loss

day, or limitation due to that condition. Thus, an individual with a
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chronic condition in good control (i.e., no flare up) cannot be

distinguished from someone without the condition. To the extent that

air pollution aggravates a health condition, we cannot distinguish

prevalence from severity in these two surveys. The information on

conditions is not available in the cross-sectional version of the files.

Both NMCES and NMCUES have detailed information on health-care

utilization and sick-loss. These include visits, hospitalization,

expenditures, bed, disability and restricted-activity days, and the

condition for each. There is detailed information on insurance coverage

and reimbursement. Except for the HIE, this data set has the most

complete insurance information of the files considered.

The severest drawback of these data sets is their inability to

produce more than crude synthetic measures of air-pollution exposure.

The NMCUES is expected to identify the respondent by SMSA only if the

respondent is in one of the largest SMSAs. NMCES identifies census

region and SMSA size but does not name the SMSA. The quality of the

temporal match with the underlying file could be quite good because

health events are dated. For the cross-sectional versions, the temporal

match will be poor because we do not know when the event occurred over

the several months period surveyed. Neither data set has smoking data.

CHOICE OF DATA SETS

After reviewing the characteristics of the available data sets for

analyzing the adverse effects of air pollution on health outcomes, we

have decided to use the HIE. However, because the HIE has some

limitations, and other data sets some advantages, we propose that the

second phase of the RAND cooperative agreement with EPA use augmented

versions of some of the other candidate data files, if certain of their

shortcomings can be overcome.

We prefer to use the HIE for our initial study because:

1. The HIE is a panel study while the others (in their present

form) are cross-sectional. As mentioned earlier, with panel

data on individuals, we can avoid the potential selection bias

in cross-sectional data sets.
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2. The HIE data can be augmented with both weather and air

pollution data to provide a better geographic and temporal

match than is possible with other data sets. This reduces the

measurement error in generating an estimate for air pollution

and weather exposure. The lower the measurement error, the

lower the errors-in-variable bias in the estimates of the air

pollution and weather coefficients.

3. The HIE has the most comprehensive set of health outcome

measures: health-care utilization (diagnosis, procedure, and

medications), sick-loss days, self-perceived health status

(general and condition specific), prevalence and severity of

chronic complaints, and lung function. Other data sets provide

only a subset of these data.

4. The health status measures in the HIE have been validated and

shown to be as reliable as or more reliable than those on other

data files.

The HIE has the following disadvantages:

1. The HIE's exclusion of the elderly is an important limitation

because they are a susceptible population that may behave

differently from the nonaged. The effects of this limitation

can only be studied by checking HIE results with other data

sets.

2. The HIE has a smaller sample size than the other data sets.

Nevertheless, given the lesser precision and the bias

associated with cross-sectional data with limited geographic

detail, the HIE's finer geographic and temporal detail will

partially offset this limitation.

3. The HIE sites cover a more limited range of air pollution. The

effect of this limitation can only be studied by checking HIE

results with other data sets that have a wider range of air

pollution levels.
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We believe that the advantages of the HIE outweigh its disadvantages.

The discussion above centered on measuring (dose) responses in

terms of health outcomes--utilization, health status, or sick loss--

as they relate to air pollution. One of the major purposes of our work

is to estimate how people value changes in levels of air pollution. To

do so, we will require measures of the value of changes in health-care

use, health status, and sick-loss induced by changes in air pollution.

We will need data on the cost of services, the value of health status,

and the opportunity cost of time. Of the data sets considered, only the

HIE, NMCES, and NMCUES provide data on the cost of health services. For

the cross-sectional versions of NMCES and NMCUES, the data have been

aggregated so that we cannot separate cardiopulmonary from other health

services (e.g., mental health treatment or maternity care). Of the data

sets considered, only the HIE has sufficient labor market data to

determine the opportunity cost of time. Work on this issue is now being

done as part of the HIE's research for the Department of Health and

Human Services. We hope to use these results in our evaluation of sick-

loss.

Two evaluation problems remain. First, it is necessary to evaluate

changes in health status. Second, none of the data sets available has

adequate sample or data to estimate the effects of air pollution on

mortality. Such an analysis will require the use of other files, or

novel ways of using existing files.
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Appendix B

STATISTICAL METHODS

To study the effect of air pollution on annual rates of illness and

use of services, we will examine the response of participants in terms

of their annual number of days lost due to illness and annual

expenditures for ambulatory medical care. Rather than rely on the more

common analysis of variance (ANOVA) or analysis of covariance techniques

(ANOCOVA), we have used a two-part model for ambulatory medical

expenditures and a negative binomial regression model for days of

illness. These choices were dictated by two characteristics of these

two health outcomes. First, a large proportion of the HIE participants

use no medical services or have no time lost due to illness. Second,

the distribution of expenses and days of illness is very skewed.

These characteristics imply that ANOVA and ANOCOVA techniques will

yield imprecise (though unbiased) estimates of the effects of air

pollution, even for a fairly large sample size such as that in the HIE.

As Duan, Manning, Morris, and Newhouse (1983) have shown for use of

medical services, a model that exploits the characteristics of the

distribution of utilization can provide more precise estimates.

In this appendix, we describe our statistical methods. The topics

include: the two-part model for estimating outpatient expenditures, and

the negative binomial regression model for estimating days lost to

illness.

TWO-PART MODEL FOR AMBULATORY MEDICAL EXPENSES

We use two equations to model the distribution of ambulatory

medical expenses. The first is a probit equation for the probability

that a person will receive any outpatient service during a year. This

equation separates users from nonusers and therefore addresses the first

characteristic described above. The second equation is a linear

regression for the logarithm of total annual outpatient medical expenses

of users. The log transformation of annual expenses for the group of

users reduces dramatically the undesirable skewness in the distribution

of expenses among users described as the second characteristic earlier.
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We therefore expect the estimates from this model to be more robust than

those that might be obtained from ANOVA and ANOCOVA models on

untransformed expenses.

More formally, the first equation is a probit equation for the

dichotomous event of zero versus positive ambulatory expense:

where ambulatory expense is positive if Iii 1 0, 0 otherwise; and xi is

a row vector of given individual characteristics (e.g., air pollution

and age).

The second equation is a linear model on the log scale for positive

ambulatory medical expenses if the person receives any services:

!Ln(AMBSi  1 Iii 2 0) = xi82 + '2i,

where E(c~~ ) xi, I li
2 0) = 0, xi is a row vector of given individual

characteristics and E
2i

is i.i.d. For the last equation, the error is

not assumed to be normally distributed.

The likelihood function for this model is multiplicatively

separable because of the way the conditional densities are calculated.

The separability does not depend on any assumption of independence

between errors in the two equations. In fact, the errors may be

correlated. Separability implies that estimating the two equations by

maximum likelihood separately provides the global full information

maximum-likelihood estimates; see Manning et al. (1981), and Duan et al.

(1983, 1984). We therefore estimate the two equations separately.

If the error term s2 in the (log) expense equation were normally

distributed, then the expected ambulatory medical expense would be
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where

and where the factor exp(o2/2) is the adjustment in the mean for

retransformation in the second (or conditional) equation if &2 were

normally distributed. However, the normal assumption for s2 is not

satisfied for the ambulatory expense data, because the residual

distribution is not normally distributed. As a result of this

nonnormality, the factor [exp(o2/2)] is not the correct adjustment in

the mean for the retransformation from the logarithmic scale to the

untransformed dollar scale and would lead to statistically inconsistent

predictions of the mean expenditure.

Instead of the normal retransformation, we use the smearing

estimates developed by Duan (1983). The smearing estimate, a

nonparametric estimate of the retransformation factor # = E(exp(s2)),  is

the sample average of the exponentiated least squares residuals. The

smearing estimate is statistically consistent for the retransformation

factor if the error distribution does not depend on the characteristics

x.

A consistent estimate of the expected expense for ambulatory

medical services is therefore provided by

where

where
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B2
is a consistent estimate of B2.

Correlation in the Error Terms in the Two-Part Model

Although we have observations for several thousand person-years of

data, we do not have that number of independent observations. The error

terms in our equations exhibit substantial positive correlations among

family members and over time for individuals. These correlations exist

in both equations. Failure to account for these correlations in the

analysis would yield inefficient estimates of the coefficients and

statistically inconsistent estimates of the standard errors. As a

result, the inference statistics (t, F, and x2) calculated in the usual

way (without adjusting for these correlations) would be too large.

All inference statistics (t, F, x2) reported in this report have

been corrected for correlation, using a nonparametric correction similar

to the random effects or intracluster model. The correction method is

fully described by Rogers (1983), based on prior work by Huber (1967).

NEGATIVE BINOMIAL MODEL FOR TIME LOST TO ILLNESS

We used a negative binomial regression model to estimate the

response of time lost to illness to air pollution. The negative

binomial distribution is an appealing model because it can yield a large

proportion of zero days and a skewed distribution of positive days;

the model can address the two characteristics of time lost due tothus,

illness mentioned earlier. The negative binomial model is more

appealing for days than a two-part model because the negative binomial

model has discrete outcomes while the two-part model has continuous

outcomes. The negative binomial regression model is more appealing than

a Poisson regression because the variance of days exceeds the mean; data

from a Poisson distribution should have equal mean and variance.

The negative binomial model can be generated from an underlying

Poisson model. Let each individual's (i's) days be drawn independently

from a Poisson distribution. If different individuals have different

rates that are sampled from a gamma distribution, then the observed

number of days follows a negative binomial distribution where
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The expected values for the sample mean and variance of annual days are

E(days) = a/B

Var(days) = a(1+B)/B2.

As long as B is positive, the variance exceeds the mean.

In the results below, we assume that the parameter B can be

expressed as a linear combination of observed individual

characteristics:

QnB = - xitSi,

where xi
is row vector of given individual characteristics, including an

intercept. We assume that a is a constant.

As noted earlier, there is a substantial positive correlation among

family members in their number of days of illness. In the days results,

we have corrected the inference statistics for this positive

correlation. This correction is similar to that of the random effects

least-squares model or, equivalently, the intracluster correlation

model. The correction method is fully described by Rogers (1983), based

on prior work by Huber (1965).


